Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Function operation
ofreq
Next ⟩
ofexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ofreq
Description:
Equality theorem for function relation.
(Contributed by
Mario Carneiro
, 28-Jul-2014)
Ref
Expression
Assertion
ofreq
⊢
R
=
S
→
∘
r
⁡
R
=
∘
r
⁡
S
Proof
Step
Hyp
Ref
Expression
1
breq
⊢
R
=
S
→
f
⁡
x
R
g
⁡
x
↔
f
⁡
x
S
g
⁡
x
2
1
ralbidv
⊢
R
=
S
→
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
R
g
⁡
x
↔
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
S
g
⁡
x
3
2
opabbidv
⊢
R
=
S
→
f
g
|
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
R
g
⁡
x
=
f
g
|
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
S
g
⁡
x
4
df-ofr
⊢
∘
r
⁡
R
=
f
g
|
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
R
g
⁡
x
5
df-ofr
⊢
∘
r
⁡
S
=
f
g
|
∀
x
∈
dom
⁡
f
∩
dom
⁡
g
f
⁡
x
S
g
⁡
x
6
3
4
5
3eqtr4g
⊢
R
=
S
→
∘
r
⁡
R
=
∘
r
⁡
S