Metamath Proof Explorer


Theorem ofreq

Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ofreq R = S r R = r S

Proof

Step Hyp Ref Expression
1 breq R = S f x R g x f x S g x
2 1 ralbidv R = S x dom f dom g f x R g x x dom f dom g f x S g x
3 2 opabbidv R = S f g | x dom f dom g f x R g x = f g | x dom f dom g f x S g x
4 df-ofr r R = f g | x dom f dom g f x R g x
5 df-ofr r S = f g | x dom f dom g f x S g x
6 3 4 5 3eqtr4g R = S r R = r S