Metamath Proof Explorer


Theorem ofresid

Description: Applying an operation restricted to the range of the functions does not change the function operation. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Hypotheses ofresid.1 φ F : A B
ofresid.2 φ G : A B
ofresid.3 φ A V
Assertion ofresid φ F R f G = F R B × B f G

Proof

Step Hyp Ref Expression
1 ofresid.1 φ F : A B
2 ofresid.2 φ G : A B
3 ofresid.3 φ A V
4 1 ffvelrnda φ x A F x B
5 2 ffvelrnda φ x A G x B
6 4 5 opelxpd φ x A F x G x B × B
7 6 fvresd φ x A R B × B F x G x = R F x G x
8 7 eqcomd φ x A R F x G x = R B × B F x G x
9 df-ov F x R G x = R F x G x
10 df-ov F x R B × B G x = R B × B F x G x
11 8 9 10 3eqtr4g φ x A F x R G x = F x R B × B G x
12 11 mpteq2dva φ x A F x R G x = x A F x R B × B G x
13 1 ffnd φ F Fn A
14 2 ffnd φ G Fn A
15 inidm A A = A
16 eqidd φ x A F x = F x
17 eqidd φ x A G x = G x
18 13 14 3 3 15 16 17 offval φ F R f G = x A F x R G x
19 13 14 3 3 15 16 17 offval φ F R B × B f G = x A F x R B × B G x
20 12 18 19 3eqtr4d φ F R f G = F R B × B f G