Metamath Proof Explorer


Theorem ofrfval

Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1 φ F Fn A
offval.2 φ G Fn B
offval.3 φ A V
offval.4 φ B W
offval.5 A B = S
offval.6 φ x A F x = C
offval.7 φ x B G x = D
Assertion ofrfval φ F R f G x S C R D

Proof

Step Hyp Ref Expression
1 offval.1 φ F Fn A
2 offval.2 φ G Fn B
3 offval.3 φ A V
4 offval.4 φ B W
5 offval.5 A B = S
6 offval.6 φ x A F x = C
7 offval.7 φ x B G x = D
8 1 3 fnexd φ F V
9 2 4 fnexd φ G V
10 1 2 8 9 5 6 7 ofrfvalg φ F R f G x S C R D