Metamath Proof Explorer


Theorem ofrfvalg

Description: Value of a relation applied to two functions. Originally part of ofrfval , this version assumes the functions are sets rather than their domains, avoiding ax-rep . (Contributed by SN, 5-Aug-2024)

Ref Expression
Hypotheses ofrfvalg.1 φFFnA
ofrfvalg.2 φGFnB
ofrfvalg.3 φFV
ofrfvalg.4 φGW
ofrfvalg.5 AB=S
ofrfvalg.6 φxAFx=C
ofrfvalg.7 φxBGx=D
Assertion ofrfvalg φFRfGxSCRD

Proof

Step Hyp Ref Expression
1 ofrfvalg.1 φFFnA
2 ofrfvalg.2 φGFnB
3 ofrfvalg.3 φFV
4 ofrfvalg.4 φGW
5 ofrfvalg.5 AB=S
6 ofrfvalg.6 φxAFx=C
7 ofrfvalg.7 φxBGx=D
8 dmeq f=Fdomf=domF
9 dmeq g=Gdomg=domG
10 8 9 ineqan12d f=Fg=Gdomfdomg=domFdomG
11 fveq1 f=Ffx=Fx
12 fveq1 g=Ggx=Gx
13 11 12 breqan12d f=Fg=GfxRgxFxRGx
14 10 13 raleqbidv f=Fg=GxdomfdomgfxRgxxdomFdomGFxRGx
15 df-ofr rR=fg|xdomfdomgfxRgx
16 14 15 brabga FVGWFRfGxdomFdomGFxRGx
17 3 4 16 syl2anc φFRfGxdomFdomGFxRGx
18 1 fndmd φdomF=A
19 2 fndmd φdomG=B
20 18 19 ineq12d φdomFdomG=AB
21 20 5 eqtrdi φdomFdomG=S
22 21 raleqdv φxdomFdomGFxRGxxSFxRGx
23 inss1 ABA
24 5 23 eqsstrri SA
25 24 sseli xSxA
26 25 6 sylan2 φxSFx=C
27 inss2 ABB
28 5 27 eqsstrri SB
29 28 sseli xSxB
30 29 7 sylan2 φxSGx=D
31 26 30 breq12d φxSFxRGxCRD
32 31 ralbidva φxSFxRGxxSCRD
33 17 22 32 3bitrd φFRfGxSCRD