Metamath Proof Explorer


Theorem ofrn

Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017)

Ref Expression
Hypotheses ofrn.1 φ F : A B
ofrn.2 φ G : A B
ofrn.3 φ + ˙ : B × B C
ofrn.4 φ A V
Assertion ofrn φ ran F + ˙ f G C

Proof

Step Hyp Ref Expression
1 ofrn.1 φ F : A B
2 ofrn.2 φ G : A B
3 ofrn.3 φ + ˙ : B × B C
4 ofrn.4 φ A V
5 3 fovrnda φ x B y B x + ˙ y C
6 inidm A A = A
7 5 1 2 4 4 6 off φ F + ˙ f G : A C
8 7 frnd φ ran F + ˙ f G C