Metamath Proof Explorer


Theorem ofrn2

Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Hypotheses ofrn.1 φ F : A B
ofrn.2 φ G : A B
ofrn.3 φ + ˙ : B × B C
ofrn.4 φ A V
Assertion ofrn2 φ ran F + ˙ f G + ˙ ran F × ran G

Proof

Step Hyp Ref Expression
1 ofrn.1 φ F : A B
2 ofrn.2 φ G : A B
3 ofrn.3 φ + ˙ : B × B C
4 ofrn.4 φ A V
5 1 ffnd φ F Fn A
6 simprl φ a A z = F a + ˙ G a a A
7 fnfvelrn F Fn A a A F a ran F
8 5 6 7 syl2an2r φ a A z = F a + ˙ G a F a ran F
9 2 ffnd φ G Fn A
10 fnfvelrn G Fn A a A G a ran G
11 9 6 10 syl2an2r φ a A z = F a + ˙ G a G a ran G
12 simprr φ a A z = F a + ˙ G a z = F a + ˙ G a
13 rspceov F a ran F G a ran G z = F a + ˙ G a x ran F y ran G z = x + ˙ y
14 8 11 12 13 syl3anc φ a A z = F a + ˙ G a x ran F y ran G z = x + ˙ y
15 14 rexlimdvaa φ a A z = F a + ˙ G a x ran F y ran G z = x + ˙ y
16 15 ss2abdv φ z | a A z = F a + ˙ G a z | x ran F y ran G z = x + ˙ y
17 inidm A A = A
18 eqidd φ a A F a = F a
19 eqidd φ a A G a = G a
20 5 9 4 4 17 18 19 offval φ F + ˙ f G = a A F a + ˙ G a
21 20 rneqd φ ran F + ˙ f G = ran a A F a + ˙ G a
22 eqid a A F a + ˙ G a = a A F a + ˙ G a
23 22 rnmpt ran a A F a + ˙ G a = z | a A z = F a + ˙ G a
24 21 23 eqtrdi φ ran F + ˙ f G = z | a A z = F a + ˙ G a
25 3 ffnd φ + ˙ Fn B × B
26 1 frnd φ ran F B
27 2 frnd φ ran G B
28 xpss12 ran F B ran G B ran F × ran G B × B
29 26 27 28 syl2anc φ ran F × ran G B × B
30 ovelimab + ˙ Fn B × B ran F × ran G B × B z + ˙ ran F × ran G x ran F y ran G z = x + ˙ y
31 25 29 30 syl2anc φ z + ˙ ran F × ran G x ran F y ran G z = x + ˙ y
32 31 abbi2dv φ + ˙ ran F × ran G = z | x ran F y ran G z = x + ˙ y
33 16 24 32 3sstr4d φ ran F + ˙ f G + ˙ ran F × ran G