Metamath Proof Explorer


Theorem ofrval

Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1 φ F Fn A
offval.2 φ G Fn B
offval.3 φ A V
offval.4 φ B W
offval.5 A B = S
ofval.6 φ X A F X = C
ofval.7 φ X B G X = D
Assertion ofrval φ F R f G X S C R D

Proof

Step Hyp Ref Expression
1 offval.1 φ F Fn A
2 offval.2 φ G Fn B
3 offval.3 φ A V
4 offval.4 φ B W
5 offval.5 A B = S
6 ofval.6 φ X A F X = C
7 ofval.7 φ X B G X = D
8 eqidd φ x A F x = F x
9 eqidd φ x B G x = G x
10 1 2 3 4 5 8 9 ofrfval φ F R f G x S F x R G x
11 10 biimpa φ F R f G x S F x R G x
12 fveq2 x = X F x = F X
13 fveq2 x = X G x = G X
14 12 13 breq12d x = X F x R G x F X R G X
15 14 rspccv x S F x R G x X S F X R G X
16 11 15 syl φ F R f G X S F X R G X
17 16 3impia φ F R f G X S F X R G X
18 simp1 φ F R f G X S φ
19 inss1 A B A
20 5 19 eqsstrri S A
21 simp3 φ F R f G X S X S
22 20 21 sselid φ F R f G X S X A
23 18 22 6 syl2anc φ F R f G X S F X = C
24 inss2 A B B
25 5 24 eqsstrri S B
26 25 21 sselid φ F R f G X S X B
27 18 26 7 syl2anc φ F R f G X S G X = D
28 17 23 27 3brtr3d φ F R f G X S C R D