Metamath Proof Explorer


Theorem ofs1

Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)

Ref Expression
Assertion ofs1 A S B T ⟨“ A ”⟩ R f ⟨“ B ”⟩ = ⟨“ A R B ”⟩

Proof

Step Hyp Ref Expression
1 snex 0 V
2 1 a1i A S B T 0 V
3 simpll A S B T i 0 A S
4 simplr A S B T i 0 B T
5 s1val A S ⟨“ A ”⟩ = 0 A
6 0nn0 0 0
7 fmptsn 0 0 A S 0 A = i 0 A
8 6 7 mpan A S 0 A = i 0 A
9 5 8 eqtrd A S ⟨“ A ”⟩ = i 0 A
10 9 adantr A S B T ⟨“ A ”⟩ = i 0 A
11 s1val B T ⟨“ B ”⟩ = 0 B
12 fmptsn 0 0 B T 0 B = i 0 B
13 6 12 mpan B T 0 B = i 0 B
14 11 13 eqtrd B T ⟨“ B ”⟩ = i 0 B
15 14 adantl A S B T ⟨“ B ”⟩ = i 0 B
16 2 3 4 10 15 offval2 A S B T ⟨“ A ”⟩ R f ⟨“ B ”⟩ = i 0 A R B
17 ovex A R B V
18 s1val A R B V ⟨“ A R B ”⟩ = 0 A R B
19 17 18 ax-mp ⟨“ A R B ”⟩ = 0 A R B
20 fmptsn 0 0 A R B V 0 A R B = i 0 A R B
21 6 17 20 mp2an 0 A R B = i 0 A R B
22 19 21 eqtri ⟨“ A R B ”⟩ = i 0 A R B
23 16 22 eqtr4di A S B T ⟨“ A ”⟩ R f ⟨“ B ”⟩ = ⟨“ A R B ”⟩