Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|
2 |
1
|
ffnd |
|
3 |
|
simp3 |
|
4 |
3
|
ffnd |
|
5 |
|
simp1 |
|
6 |
|
inidm |
|
7 |
|
eqidd |
|
8 |
|
eqidd |
|
9 |
2 4 5 5 6 7 8
|
ofval |
|
10 |
|
c0ex |
|
11 |
10
|
fvconst2 |
|
12 |
11
|
adantl |
|
13 |
9 12
|
eqeq12d |
|
14 |
1
|
ffvelrnda |
|
15 |
3
|
ffvelrnda |
|
16 |
14 15
|
subeq0ad |
|
17 |
13 16
|
bitrd |
|
18 |
17
|
ralbidva |
|
19 |
2 4 5 5 6
|
offn |
|
20 |
10
|
fconst |
|
21 |
|
ffn |
|
22 |
20 21
|
ax-mp |
|
23 |
|
eqfnfv |
|
24 |
19 22 23
|
sylancl |
|
25 |
|
eqfnfv |
|
26 |
2 4 25
|
syl2anc |
|
27 |
18 24 26
|
3bitr4d |
|