| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|
| 2 |
1
|
ffnd |
|
| 3 |
|
simp3 |
|
| 4 |
3
|
ffnd |
|
| 5 |
|
simp1 |
|
| 6 |
|
inidm |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqidd |
|
| 9 |
2 4 5 5 6 7 8
|
ofval |
|
| 10 |
|
c0ex |
|
| 11 |
10
|
fvconst2 |
|
| 12 |
11
|
adantl |
|
| 13 |
9 12
|
eqeq12d |
|
| 14 |
1
|
ffvelcdmda |
|
| 15 |
3
|
ffvelcdmda |
|
| 16 |
14 15
|
subeq0ad |
|
| 17 |
13 16
|
bitrd |
|
| 18 |
17
|
ralbidva |
|
| 19 |
2 4 5 5 6
|
offn |
|
| 20 |
10
|
fconst |
|
| 21 |
|
ffn |
|
| 22 |
20 21
|
ax-mp |
|
| 23 |
|
eqfnfv |
|
| 24 |
19 22 23
|
sylancl |
|
| 25 |
|
eqfnfv |
|
| 26 |
2 4 25
|
syl2anc |
|
| 27 |
18 24 26
|
3bitr4d |
|