Step |
Hyp |
Ref |
Expression |
1 |
|
ofun.a |
|
2 |
|
ofun.b |
|
3 |
|
ofun.c |
|
4 |
|
ofun.d |
|
5 |
|
ofun.m |
|
6 |
|
ofun.n |
|
7 |
|
ofun.1 |
|
8 |
1 3 7
|
fnund |
|
9 |
2 4 7
|
fnund |
|
10 |
5 6
|
unexd |
|
11 |
|
inidm |
|
12 |
8 9 10 10 11
|
offn |
|
13 |
|
inidm |
|
14 |
1 2 5 5 13
|
offn |
|
15 |
|
inidm |
|
16 |
3 4 6 6 15
|
offn |
|
17 |
14 16 7
|
fnund |
|
18 |
|
eqidd |
|
19 |
|
eqidd |
|
20 |
8 9 10 10 11 18 19
|
ofval |
|
21 |
|
elun |
|
22 |
|
eqidd |
|
23 |
|
eqidd |
|
24 |
1 2 5 5 13 22 23
|
ofval |
|
25 |
14
|
adantr |
|
26 |
16
|
adantr |
|
27 |
7
|
adantr |
|
28 |
|
simpr |
|
29 |
25 26 27 28
|
fvun1d |
|
30 |
1
|
adantr |
|
31 |
3
|
adantr |
|
32 |
30 31 27 28
|
fvun1d |
|
33 |
2
|
adantr |
|
34 |
4
|
adantr |
|
35 |
33 34 27 28
|
fvun1d |
|
36 |
32 35
|
oveq12d |
|
37 |
24 29 36
|
3eqtr4rd |
|
38 |
|
eqidd |
|
39 |
|
eqidd |
|
40 |
3 4 6 6 15 38 39
|
ofval |
|
41 |
14
|
adantr |
|
42 |
16
|
adantr |
|
43 |
7
|
adantr |
|
44 |
|
simpr |
|
45 |
41 42 43 44
|
fvun2d |
|
46 |
1
|
adantr |
|
47 |
3
|
adantr |
|
48 |
46 47 43 44
|
fvun2d |
|
49 |
2
|
adantr |
|
50 |
4
|
adantr |
|
51 |
49 50 43 44
|
fvun2d |
|
52 |
48 51
|
oveq12d |
|
53 |
40 45 52
|
3eqtr4rd |
|
54 |
37 53
|
jaodan |
|
55 |
21 54
|
sylan2b |
|
56 |
20 55
|
eqtrd |
|
57 |
12 17 56
|
eqfnfvd |
|