Metamath Proof Explorer


Theorem ofun

Description: A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024)

Ref Expression
Hypotheses ofun.a φ A Fn M
ofun.b φ B Fn M
ofun.c φ C Fn N
ofun.d φ D Fn N
ofun.m φ M V
ofun.n φ N W
ofun.1 φ M N =
Assertion ofun φ A C R f B D = A R f B C R f D

Proof

Step Hyp Ref Expression
1 ofun.a φ A Fn M
2 ofun.b φ B Fn M
3 ofun.c φ C Fn N
4 ofun.d φ D Fn N
5 ofun.m φ M V
6 ofun.n φ N W
7 ofun.1 φ M N =
8 1 3 7 fnund φ A C Fn M N
9 2 4 7 fnund φ B D Fn M N
10 5 6 unexd φ M N V
11 inidm M N M N = M N
12 8 9 10 10 11 offn φ A C R f B D Fn M N
13 inidm M M = M
14 1 2 5 5 13 offn φ A R f B Fn M
15 inidm N N = N
16 3 4 6 6 15 offn φ C R f D Fn N
17 14 16 7 fnund φ A R f B C R f D Fn M N
18 eqidd φ x M N A C x = A C x
19 eqidd φ x M N B D x = B D x
20 8 9 10 10 11 18 19 ofval φ x M N A C R f B D x = A C x R B D x
21 elun x M N x M x N
22 eqidd φ x M A x = A x
23 eqidd φ x M B x = B x
24 1 2 5 5 13 22 23 ofval φ x M A R f B x = A x R B x
25 14 adantr φ x M A R f B Fn M
26 16 adantr φ x M C R f D Fn N
27 7 adantr φ x M M N =
28 simpr φ x M x M
29 25 26 27 28 fvun1d φ x M A R f B C R f D x = A R f B x
30 1 adantr φ x M A Fn M
31 3 adantr φ x M C Fn N
32 30 31 27 28 fvun1d φ x M A C x = A x
33 2 adantr φ x M B Fn M
34 4 adantr φ x M D Fn N
35 33 34 27 28 fvun1d φ x M B D x = B x
36 32 35 oveq12d φ x M A C x R B D x = A x R B x
37 24 29 36 3eqtr4rd φ x M A C x R B D x = A R f B C R f D x
38 eqidd φ x N C x = C x
39 eqidd φ x N D x = D x
40 3 4 6 6 15 38 39 ofval φ x N C R f D x = C x R D x
41 14 adantr φ x N A R f B Fn M
42 16 adantr φ x N C R f D Fn N
43 7 adantr φ x N M N =
44 simpr φ x N x N
45 41 42 43 44 fvun2d φ x N A R f B C R f D x = C R f D x
46 1 adantr φ x N A Fn M
47 3 adantr φ x N C Fn N
48 46 47 43 44 fvun2d φ x N A C x = C x
49 2 adantr φ x N B Fn M
50 4 adantr φ x N D Fn N
51 49 50 43 44 fvun2d φ x N B D x = D x
52 48 51 oveq12d φ x N A C x R B D x = C x R D x
53 40 45 52 3eqtr4rd φ x N A C x R B D x = A R f B C R f D x
54 37 53 jaodan φ x M x N A C x R B D x = A R f B C R f D x
55 21 54 sylan2b φ x M N A C x R B D x = A R f B C R f D x
56 20 55 eqtrd φ x M N A C R f B D x = A R f B C R f D x
57 12 17 56 eqfnfvd φ A C R f B D = A R f B C R f D