Metamath Proof Explorer


Theorem oien

Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F = OrdIso R A
Assertion oien A V R We A dom F A

Proof

Step Hyp Ref Expression
1 oicl.1 F = OrdIso R A
2 1 oiexg A V F V
3 1 oiiso A V R We A F Isom E , R dom F A
4 isof1o F Isom E , R dom F A F : dom F 1-1 onto A
5 3 4 syl A V R We A F : dom F 1-1 onto A
6 f1oen3g F V F : dom F 1-1 onto A dom F A
7 2 5 6 syl2an2r A V R We A dom F A