Metamath Proof Explorer


Theorem oiexg

Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypothesis oicl.1 F = OrdIso R A
Assertion oiexg A V F V

Proof

Step Hyp Ref Expression
1 oicl.1 F = OrdIso R A
2 1 ordtype R We A R Se A F Isom E , R dom F A
3 isof1o F Isom E , R dom F A F : dom F 1-1 onto A
4 f1of1 F : dom F 1-1 onto A F : dom F 1-1 A
5 2 3 4 3syl R We A R Se A F : dom F 1-1 A
6 f1f F : dom F 1-1 A F : dom F A
7 f1dmex F : dom F 1-1 A A V dom F V
8 fex F : dom F A dom F V F V
9 6 7 8 syl2an2r F : dom F 1-1 A A V F V
10 9 expcom A V F : dom F 1-1 A F V
11 5 10 syl5 A V R We A R Se A F V
12 1 oi0 ¬ R We A R Se A F =
13 0ex V
14 12 13 eqeltrdi ¬ R We A R Se A F V
15 11 14 pm2.61d1 A V F V