Metamath Proof Explorer


Theorem oiiso

Description: The order isomorphism of the well-order R on A is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F = OrdIso R A
Assertion oiiso A V R We A F Isom E , R dom F A

Proof

Step Hyp Ref Expression
1 oicl.1 F = OrdIso R A
2 exse A V R Se A
3 1 ordtype R We A R Se A F Isom E , R dom F A
4 3 ancoms R Se A R We A F Isom E , R dom F A
5 2 4 sylan A V R We A F Isom E , R dom F A