Metamath Proof Explorer


Theorem oion

Description: The order type of the well-order R on A is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 23-May-2015)

Ref Expression
Hypothesis oicl.1 F = OrdIso R A
Assertion oion A V dom F On

Proof

Step Hyp Ref Expression
1 oicl.1 F = OrdIso R A
2 1 oicl Ord dom F
3 1 oiexg A V F V
4 dmexg F V dom F V
5 elong dom F V dom F On Ord dom F
6 3 4 5 3syl A V dom F On Ord dom F
7 2 6 mpbiri A V dom F On