Metamath Proof Explorer


Theorem oldlim

Description: The value of the old set at a limit ordinal. (Contributed by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion oldlim Lim A A V Old A = Old A

Proof

Step Hyp Ref Expression
1 simprl Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> c e. A ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> c e. A ) with typecode |-
2 limsuc Lim A c A suc c A
3 2 ad2antrr Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> ( c e. A <-> suc c e. A ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> ( c e. A <-> suc c e. A ) ) with typecode |-
4 1 3 mpbid Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> suc c e. A ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> suc c e. A ) with typecode |-
5 simprr Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> x e. ( _Made ` c ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> x e. ( _Made ` c ) ) with typecode |-
6 limord Lim A Ord A
7 elex A V A V
8 6 7 anim12i Lim A A V Ord A A V
9 elon2 A On Ord A A V
10 8 9 sylibr Lim A A V A On
11 onelon A On c A c On
12 10 1 11 syl2an2r Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> c e. On ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> c e. On ) with typecode |-
13 madeoldsuc Could not format ( c e. On -> ( _Made ` c ) = ( _Old ` suc c ) ) : No typesetting found for |- ( c e. On -> ( _Made ` c ) = ( _Old ` suc c ) ) with typecode |-
14 12 13 syl Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> ( _Made ` c ) = ( _Old ` suc c ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> ( _Made ` c ) = ( _Old ` suc c ) ) with typecode |-
15 5 14 eleqtrd Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> x e. ( _Old ` suc c ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> x e. ( _Old ` suc c ) ) with typecode |-
16 fveq2 b = suc c Old b = Old suc c
17 16 eleq2d b = suc c x Old b x Old suc c
18 17 rspcev suc c A x Old suc c b A x Old b
19 4 15 18 syl2anc Could not format ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> E. b e. A x e. ( _Old ` b ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( c e. A /\ x e. ( _Made ` c ) ) ) -> E. b e. A x e. ( _Old ` b ) ) with typecode |-
20 19 rexlimdvaa Could not format ( ( Lim A /\ A e. V ) -> ( E. c e. A x e. ( _Made ` c ) -> E. b e. A x e. ( _Old ` b ) ) ) : No typesetting found for |- ( ( Lim A /\ A e. V ) -> ( E. c e. A x e. ( _Made ` c ) -> E. b e. A x e. ( _Old ` b ) ) ) with typecode |-
21 simprl Lim A A V b A x Old b b A
22 oldssmade Could not format ( _Old ` b ) C_ ( _Made ` b ) : No typesetting found for |- ( _Old ` b ) C_ ( _Made ` b ) with typecode |-
23 simprr Lim A A V b A x Old b x Old b
24 22 23 sselid Could not format ( ( ( Lim A /\ A e. V ) /\ ( b e. A /\ x e. ( _Old ` b ) ) ) -> x e. ( _Made ` b ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( b e. A /\ x e. ( _Old ` b ) ) ) -> x e. ( _Made ` b ) ) with typecode |-
25 fveq2 Could not format ( c = b -> ( _Made ` c ) = ( _Made ` b ) ) : No typesetting found for |- ( c = b -> ( _Made ` c ) = ( _Made ` b ) ) with typecode |-
26 25 eleq2d Could not format ( c = b -> ( x e. ( _Made ` c ) <-> x e. ( _Made ` b ) ) ) : No typesetting found for |- ( c = b -> ( x e. ( _Made ` c ) <-> x e. ( _Made ` b ) ) ) with typecode |-
27 26 rspcev Could not format ( ( b e. A /\ x e. ( _Made ` b ) ) -> E. c e. A x e. ( _Made ` c ) ) : No typesetting found for |- ( ( b e. A /\ x e. ( _Made ` b ) ) -> E. c e. A x e. ( _Made ` c ) ) with typecode |-
28 21 24 27 syl2anc Could not format ( ( ( Lim A /\ A e. V ) /\ ( b e. A /\ x e. ( _Old ` b ) ) ) -> E. c e. A x e. ( _Made ` c ) ) : No typesetting found for |- ( ( ( Lim A /\ A e. V ) /\ ( b e. A /\ x e. ( _Old ` b ) ) ) -> E. c e. A x e. ( _Made ` c ) ) with typecode |-
29 28 rexlimdvaa Could not format ( ( Lim A /\ A e. V ) -> ( E. b e. A x e. ( _Old ` b ) -> E. c e. A x e. ( _Made ` c ) ) ) : No typesetting found for |- ( ( Lim A /\ A e. V ) -> ( E. b e. A x e. ( _Old ` b ) -> E. c e. A x e. ( _Made ` c ) ) ) with typecode |-
30 20 29 impbid Could not format ( ( Lim A /\ A e. V ) -> ( E. c e. A x e. ( _Made ` c ) <-> E. b e. A x e. ( _Old ` b ) ) ) : No typesetting found for |- ( ( Lim A /\ A e. V ) -> ( E. c e. A x e. ( _Made ` c ) <-> E. b e. A x e. ( _Old ` b ) ) ) with typecode |-
31 elold Could not format ( A e. On -> ( x e. ( _Old ` A ) <-> E. c e. A x e. ( _Made ` c ) ) ) : No typesetting found for |- ( A e. On -> ( x e. ( _Old ` A ) <-> E. c e. A x e. ( _Made ` c ) ) ) with typecode |-
32 10 31 syl Could not format ( ( Lim A /\ A e. V ) -> ( x e. ( _Old ` A ) <-> E. c e. A x e. ( _Made ` c ) ) ) : No typesetting found for |- ( ( Lim A /\ A e. V ) -> ( x e. ( _Old ` A ) <-> E. c e. A x e. ( _Made ` c ) ) ) with typecode |-
33 eliun x b A Old b b A x Old b
34 33 a1i Lim A A V x b A Old b b A x Old b
35 30 32 34 3bitr4d Lim A A V x Old A x b A Old b
36 35 eqrdv Lim A A V Old A = b A Old b
37 oldf Old : On 𝒫 No
38 ffun Old : On 𝒫 No Fun Old
39 funiunfv Fun Old b A Old b = Old A
40 37 38 39 mp2b b A Old b = Old A
41 36 40 eqtrdi Lim A A V Old A = Old A