Metamath Proof Explorer


Theorem olj02

Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses olj0.b B = Base K
olj0.j ˙ = join K
olj0.z 0 ˙ = 0. K
Assertion olj02 K OL X B 0 ˙ ˙ X = X

Proof

Step Hyp Ref Expression
1 olj0.b B = Base K
2 olj0.j ˙ = join K
3 olj0.z 0 ˙ = 0. K
4 ollat K OL K Lat
5 4 adantr K OL X B K Lat
6 olop K OL K OP
7 1 3 op0cl K OP 0 ˙ B
8 6 7 syl K OL 0 ˙ B
9 8 adantr K OL X B 0 ˙ B
10 simpr K OL X B X B
11 1 2 latjcom K Lat 0 ˙ B X B 0 ˙ ˙ X = X ˙ 0 ˙
12 5 9 10 11 syl3anc K OL X B 0 ˙ ˙ X = X ˙ 0 ˙
13 1 2 3 olj01 K OL X B X ˙ 0 ˙ = X
14 12 13 eqtrd K OL X B 0 ˙ ˙ X = X