Metamath Proof Explorer


Theorem olm01

Description: Meet with lattice zero is zero. ( chm0 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olm0.b B = Base K
olm0.m ˙ = meet K
olm0.z 0 ˙ = 0. K
Assertion olm01 K OL X B X ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 olm0.b B = Base K
2 olm0.m ˙ = meet K
3 olm0.z 0 ˙ = 0. K
4 eqid K = K
5 ollat K OL K Lat
6 5 adantr K OL X B K Lat
7 simpr K OL X B X B
8 olop K OL K OP
9 8 adantr K OL X B K OP
10 1 3 op0cl K OP 0 ˙ B
11 9 10 syl K OL X B 0 ˙ B
12 1 2 latmcl K Lat X B 0 ˙ B X ˙ 0 ˙ B
13 6 7 11 12 syl3anc K OL X B X ˙ 0 ˙ B
14 1 4 2 latmle2 K Lat X B 0 ˙ B X ˙ 0 ˙ K 0 ˙
15 6 7 11 14 syl3anc K OL X B X ˙ 0 ˙ K 0 ˙
16 1 4 3 op0le K OP X B 0 ˙ K X
17 8 16 sylan K OL X B 0 ˙ K X
18 1 4 latref K Lat 0 ˙ B 0 ˙ K 0 ˙
19 6 11 18 syl2anc K OL X B 0 ˙ K 0 ˙
20 1 4 2 latlem12 K Lat 0 ˙ B X B 0 ˙ B 0 ˙ K X 0 ˙ K 0 ˙ 0 ˙ K X ˙ 0 ˙
21 6 11 7 11 20 syl13anc K OL X B 0 ˙ K X 0 ˙ K 0 ˙ 0 ˙ K X ˙ 0 ˙
22 17 19 21 mpbi2and K OL X B 0 ˙ K X ˙ 0 ˙
23 1 4 6 13 11 15 22 latasymd K OL X B X ˙ 0 ˙ = 0 ˙