Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
olm02
Next ⟩
isoml
Metamath Proof Explorer
Ascii
Unicode
Theorem
olm02
Description:
Meet with lattice zero is zero.
(Contributed by
NM
, 9-Oct-2012)
Ref
Expression
Hypotheses
olm0.b
⊢
B
=
Base
K
olm0.m
⊢
∧
˙
=
meet
⁡
K
olm0.z
⊢
0
˙
=
0.
⁡
K
Assertion
olm02
⊢
K
∈
OL
∧
X
∈
B
→
0
˙
∧
˙
X
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
olm0.b
⊢
B
=
Base
K
2
olm0.m
⊢
∧
˙
=
meet
⁡
K
3
olm0.z
⊢
0
˙
=
0.
⁡
K
4
ollat
⊢
K
∈
OL
→
K
∈
Lat
5
4
adantr
⊢
K
∈
OL
∧
X
∈
B
→
K
∈
Lat
6
simpr
⊢
K
∈
OL
∧
X
∈
B
→
X
∈
B
7
olop
⊢
K
∈
OL
→
K
∈
OP
8
7
adantr
⊢
K
∈
OL
∧
X
∈
B
→
K
∈
OP
9
1
3
op0cl
⊢
K
∈
OP
→
0
˙
∈
B
10
8
9
syl
⊢
K
∈
OL
∧
X
∈
B
→
0
˙
∈
B
11
1
2
latmcom
⊢
K
∈
Lat
∧
X
∈
B
∧
0
˙
∈
B
→
X
∧
˙
0
˙
=
0
˙
∧
˙
X
12
5
6
10
11
syl3anc
⊢
K
∈
OL
∧
X
∈
B
→
X
∧
˙
0
˙
=
0
˙
∧
˙
X
13
1
2
3
olm01
⊢
K
∈
OL
∧
X
∈
B
→
X
∧
˙
0
˙
=
0
˙
14
12
13
eqtr3d
⊢
K
∈
OL
∧
X
∈
B
→
0
˙
∧
˙
X
=
0
˙