Metamath Proof Explorer


Theorem olm02

Description: Meet with lattice zero is zero. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses olm0.b B = Base K
olm0.m ˙ = meet K
olm0.z 0 ˙ = 0. K
Assertion olm02 K OL X B 0 ˙ ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 olm0.b B = Base K
2 olm0.m ˙ = meet K
3 olm0.z 0 ˙ = 0. K
4 ollat K OL K Lat
5 4 adantr K OL X B K Lat
6 simpr K OL X B X B
7 olop K OL K OP
8 7 adantr K OL X B K OP
9 1 3 op0cl K OP 0 ˙ B
10 8 9 syl K OL X B 0 ˙ B
11 1 2 latmcom K Lat X B 0 ˙ B X ˙ 0 ˙ = 0 ˙ ˙ X
12 5 6 10 11 syl3anc K OL X B X ˙ 0 ˙ = 0 ˙ ˙ X
13 1 2 3 olm01 K OL X B X ˙ 0 ˙ = 0 ˙
14 12 13 eqtr3d K OL X B 0 ˙ ˙ X = 0 ˙