Metamath Proof Explorer


Theorem om0r

Description: Ordinal multiplication with zero. Proposition 8.18(1) of TakeutiZaring p. 63. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion om0r A On 𝑜 A =

Proof

Step Hyp Ref Expression
1 oveq2 x = 𝑜 x = 𝑜
2 1 eqeq1d x = 𝑜 x = 𝑜 =
3 oveq2 x = y 𝑜 x = 𝑜 y
4 3 eqeq1d x = y 𝑜 x = 𝑜 y =
5 oveq2 x = suc y 𝑜 x = 𝑜 suc y
6 5 eqeq1d x = suc y 𝑜 x = 𝑜 suc y =
7 oveq2 x = A 𝑜 x = 𝑜 A
8 7 eqeq1d x = A 𝑜 x = 𝑜 A =
9 0elon On
10 om0 On 𝑜 =
11 9 10 ax-mp 𝑜 =
12 oveq1 𝑜 y = 𝑜 y + 𝑜 = + 𝑜
13 omsuc On y On 𝑜 suc y = 𝑜 y + 𝑜
14 9 13 mpan y On 𝑜 suc y = 𝑜 y + 𝑜
15 oa0 On + 𝑜 =
16 9 15 ax-mp + 𝑜 =
17 16 eqcomi = + 𝑜
18 17 a1i y On = + 𝑜
19 14 18 eqeq12d y On 𝑜 suc y = 𝑜 y + 𝑜 = + 𝑜
20 12 19 syl5ibr y On 𝑜 y = 𝑜 suc y =
21 iuneq2 y x 𝑜 y = y x 𝑜 y = y x
22 iun0 y x =
23 21 22 eqtrdi y x 𝑜 y = y x 𝑜 y =
24 vex x V
25 omlim On x V Lim x 𝑜 x = y x 𝑜 y
26 9 25 mpan x V Lim x 𝑜 x = y x 𝑜 y
27 24 26 mpan Lim x 𝑜 x = y x 𝑜 y
28 27 eqeq1d Lim x 𝑜 x = y x 𝑜 y =
29 23 28 syl5ibr Lim x y x 𝑜 y = 𝑜 x =
30 2 4 6 8 11 20 29 tfinds A On 𝑜 A =