Metamath Proof Explorer


Theorem om2uzisoi

Description: G (see om2uz0i ) is an isomorphism from natural ordinals to upper integers. (Contributed by NM, 9-Oct-2008) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzisoi G Isom E , < ω C

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 1 2 om2uzf1oi G : ω 1-1 onto C
4 epel y E z y z
5 1 2 om2uzlt2i y ω z ω y z G y < G z
6 4 5 syl5bb y ω z ω y E z G y < G z
7 6 rgen2 y ω z ω y E z G y < G z
8 df-isom G Isom E , < ω C G : ω 1-1 onto C y ω z ω y E z G y < G z
9 3 7 8 mpbir2an G Isom E , < ω C