Metamath Proof Explorer


Theorem om2uzoi

Description: An alternative definition of G in terms of df-oi . (Contributed by Mario Carneiro, 2-Jun-2015)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzoi G = OrdIso < C

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 ordom Ord ω
4 1 2 om2uzisoi G Isom E , < ω C
5 3 4 pm3.2i Ord ω G Isom E , < ω C
6 ordwe Ord ω E We ω
7 3 6 ax-mp E We ω
8 isowe G Isom E , < ω C E We ω < We C
9 4 8 ax-mp E We ω < We C
10 7 9 mpbi < We C
11 fvex C V
12 exse C V < Se C
13 11 12 ax-mp < Se C
14 eqid OrdIso < C = OrdIso < C
15 14 oieu < We C < Se C Ord ω G Isom E , < ω C ω = dom OrdIso < C G = OrdIso < C
16 10 13 15 mp2an Ord ω G Isom E , < ω C ω = dom OrdIso < C G = OrdIso < C
17 5 16 mpbi ω = dom OrdIso < C G = OrdIso < C
18 17 simpri G = OrdIso < C