Metamath Proof Explorer


Theorem om2uzrani

Description: Range of G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzrani ran G = C

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 frfnom rec x V x + 1 C ω Fn ω
4 2 fneq1i G Fn ω rec x V x + 1 C ω Fn ω
5 3 4 mpbir G Fn ω
6 fvelrnb G Fn ω y ran G z ω G z = y
7 5 6 ax-mp y ran G z ω G z = y
8 1 2 om2uzuzi z ω G z C
9 eleq1 G z = y G z C y C
10 8 9 syl5ibcom z ω G z = y y C
11 10 rexlimiv z ω G z = y y C
12 7 11 sylbi y ran G y C
13 eleq1 z = C z ran G C ran G
14 eleq1 z = y z ran G y ran G
15 eleq1 z = y + 1 z ran G y + 1 ran G
16 1 2 om2uz0i G = C
17 peano1 ω
18 fnfvelrn G Fn ω ω G ran G
19 5 17 18 mp2an G ran G
20 16 19 eqeltrri C ran G
21 1 2 om2uzsuci z ω G suc z = G z + 1
22 oveq1 G z = y G z + 1 = y + 1
23 21 22 sylan9eq z ω G z = y G suc z = y + 1
24 peano2 z ω suc z ω
25 fnfvelrn G Fn ω suc z ω G suc z ran G
26 5 24 25 sylancr z ω G suc z ran G
27 26 adantr z ω G z = y G suc z ran G
28 23 27 eqeltrrd z ω G z = y y + 1 ran G
29 28 rexlimiva z ω G z = y y + 1 ran G
30 7 29 sylbi y ran G y + 1 ran G
31 30 a1i y C y ran G y + 1 ran G
32 13 14 15 14 20 31 uzind4i y C y ran G
33 12 32 impbii y ran G y C
34 33 eqriv ran G = C