Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|
2 |
|
om2uz.2 |
|
3 |
|
uzrdg.1 |
|
4 |
|
uzrdg.2 |
|
5 |
|
fveq2 |
|
6 |
|
fveq2 |
|
7 |
|
2fveq3 |
|
8 |
6 7
|
opeq12d |
|
9 |
5 8
|
eqeq12d |
|
10 |
|
fveq2 |
|
11 |
|
fveq2 |
|
12 |
|
2fveq3 |
|
13 |
11 12
|
opeq12d |
|
14 |
10 13
|
eqeq12d |
|
15 |
|
fveq2 |
|
16 |
|
fveq2 |
|
17 |
|
2fveq3 |
|
18 |
16 17
|
opeq12d |
|
19 |
15 18
|
eqeq12d |
|
20 |
|
fveq2 |
|
21 |
|
fveq2 |
|
22 |
|
2fveq3 |
|
23 |
21 22
|
opeq12d |
|
24 |
20 23
|
eqeq12d |
|
25 |
4
|
fveq1i |
|
26 |
|
opex |
|
27 |
|
fr0g |
|
28 |
26 27
|
ax-mp |
|
29 |
25 28
|
eqtri |
|
30 |
1 2
|
om2uz0i |
|
31 |
29
|
fveq2i |
|
32 |
1
|
elexi |
|
33 |
32 3
|
op2nd |
|
34 |
31 33
|
eqtri |
|
35 |
30 34
|
opeq12i |
|
36 |
29 35
|
eqtr4i |
|
37 |
|
frsuc |
|
38 |
4
|
fveq1i |
|
39 |
4
|
fveq1i |
|
40 |
39
|
fveq2i |
|
41 |
37 38 40
|
3eqtr4g |
|
42 |
|
fveq2 |
|
43 |
|
df-ov |
|
44 |
|
fvex |
|
45 |
|
fvex |
|
46 |
|
oveq1 |
|
47 |
|
oveq1 |
|
48 |
46 47
|
opeq12d |
|
49 |
|
oveq2 |
|
50 |
49
|
opeq2d |
|
51 |
|
oveq1 |
|
52 |
|
oveq1 |
|
53 |
51 52
|
opeq12d |
|
54 |
|
oveq2 |
|
55 |
54
|
opeq2d |
|
56 |
53 55
|
cbvmpov |
|
57 |
|
opex |
|
58 |
48 50 56 57
|
ovmpo |
|
59 |
44 45 58
|
mp2an |
|
60 |
43 59
|
eqtr3i |
|
61 |
42 60
|
eqtrdi |
|
62 |
41 61
|
sylan9eq |
|
63 |
1 2
|
om2uzsuci |
|
64 |
63
|
adantr |
|
65 |
62
|
fveq2d |
|
66 |
|
ovex |
|
67 |
|
ovex |
|
68 |
66 67
|
op2nd |
|
69 |
65 68
|
eqtrdi |
|
70 |
64 69
|
opeq12d |
|
71 |
62 70
|
eqtr4d |
|
72 |
71
|
ex |
|
73 |
9 14 19 24 36 72
|
finds |
|