Metamath Proof Explorer


Theorem om2uzsuci

Description: The value of G (see om2uz0i ) at a successor. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzsuci A ω G suc A = G A + 1

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 suceq z = A suc z = suc A
4 3 fveq2d z = A G suc z = G suc A
5 fveq2 z = A G z = G A
6 5 oveq1d z = A G z + 1 = G A + 1
7 4 6 eqeq12d z = A G suc z = G z + 1 G suc A = G A + 1
8 ovex G z + 1 V
9 oveq1 y = x y + 1 = x + 1
10 oveq1 y = G z y + 1 = G z + 1
11 2 9 10 frsucmpt2 z ω G z + 1 V G suc z = G z + 1
12 8 11 mpan2 z ω G suc z = G z + 1
13 7 12 vtoclga A ω G suc A = G A + 1