Metamath Proof Explorer


Theorem om2uzuzi

Description: The value G (see om2uz0i ) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
Assertion om2uzuzi A ω G A C

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 fveq2 y = G y = G
4 3 eleq1d y = G y C G C
5 fveq2 y = z G y = G z
6 5 eleq1d y = z G y C G z C
7 fveq2 y = suc z G y = G suc z
8 7 eleq1d y = suc z G y C G suc z C
9 fveq2 y = A G y = G A
10 9 eleq1d y = A G y C G A C
11 1 2 om2uz0i G = C
12 uzid C C C
13 1 12 ax-mp C C
14 11 13 eqeltri G C
15 peano2uz G z C G z + 1 C
16 1 2 om2uzsuci z ω G suc z = G z + 1
17 16 eleq1d z ω G suc z C G z + 1 C
18 15 17 syl5ibr z ω G z C G suc z C
19 4 6 8 10 14 18 finds A ω G A C