Metamath Proof Explorer


Theorem omabs

Description: Ordinal multiplication is also absorbed by powers of _om . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion omabs A ω A B On B A 𝑜 ω 𝑜 B = ω 𝑜 B

Proof

Step Hyp Ref Expression
1 eleq2 x = x
2 oveq2 x = ω 𝑜 x = ω 𝑜
3 2 oveq2d x = A 𝑜 ω 𝑜 x = A 𝑜 ω 𝑜
4 3 2 eqeq12d x = A 𝑜 ω 𝑜 x = ω 𝑜 x A 𝑜 ω 𝑜 = ω 𝑜
5 1 4 imbi12d x = x A 𝑜 ω 𝑜 x = ω 𝑜 x A 𝑜 ω 𝑜 = ω 𝑜
6 eleq2 x = y x y
7 oveq2 x = y ω 𝑜 x = ω 𝑜 y
8 7 oveq2d x = y A 𝑜 ω 𝑜 x = A 𝑜 ω 𝑜 y
9 8 7 eqeq12d x = y A 𝑜 ω 𝑜 x = ω 𝑜 x A 𝑜 ω 𝑜 y = ω 𝑜 y
10 6 9 imbi12d x = y x A 𝑜 ω 𝑜 x = ω 𝑜 x y A 𝑜 ω 𝑜 y = ω 𝑜 y
11 eleq2 x = suc y x suc y
12 oveq2 x = suc y ω 𝑜 x = ω 𝑜 suc y
13 12 oveq2d x = suc y A 𝑜 ω 𝑜 x = A 𝑜 ω 𝑜 suc y
14 13 12 eqeq12d x = suc y A 𝑜 ω 𝑜 x = ω 𝑜 x A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
15 11 14 imbi12d x = suc y x A 𝑜 ω 𝑜 x = ω 𝑜 x suc y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
16 eleq2 x = B x B
17 oveq2 x = B ω 𝑜 x = ω 𝑜 B
18 17 oveq2d x = B A 𝑜 ω 𝑜 x = A 𝑜 ω 𝑜 B
19 18 17 eqeq12d x = B A 𝑜 ω 𝑜 x = ω 𝑜 x A 𝑜 ω 𝑜 B = ω 𝑜 B
20 16 19 imbi12d x = B x A 𝑜 ω 𝑜 x = ω 𝑜 x B A 𝑜 ω 𝑜 B = ω 𝑜 B
21 noel ¬
22 21 pm2.21i A 𝑜 ω 𝑜 = ω 𝑜
23 22 a1i A ω A ω On A 𝑜 ω 𝑜 = ω 𝑜
24 simprl A ω A ω On y On ω On
25 simpll A ω A ω On y On A ω
26 simplr A ω A ω On y On A
27 omabslem ω On A ω A A 𝑜 ω = ω
28 24 25 26 27 syl3anc A ω A ω On y On A 𝑜 ω = ω
29 28 adantr A ω A ω On y On y = A 𝑜 ω = ω
30 suceq y = suc y = suc
31 df-1o 1 𝑜 = suc
32 30 31 eqtr4di y = suc y = 1 𝑜
33 32 oveq2d y = ω 𝑜 suc y = ω 𝑜 1 𝑜
34 oe1 ω On ω 𝑜 1 𝑜 = ω
35 34 ad2antrl A ω A ω On y On ω 𝑜 1 𝑜 = ω
36 33 35 sylan9eqr A ω A ω On y On y = ω 𝑜 suc y = ω
37 36 oveq2d A ω A ω On y On y = A 𝑜 ω 𝑜 suc y = A 𝑜 ω
38 29 37 36 3eqtr4d A ω A ω On y On y = A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
39 38 ex A ω A ω On y On y = A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
40 39 a1dd A ω A ω On y On y = y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
41 oveq1 A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 y 𝑜 ω = ω 𝑜 y 𝑜 ω
42 oesuc ω On y On ω 𝑜 suc y = ω 𝑜 y 𝑜 ω
43 42 adantl A ω A ω On y On ω 𝑜 suc y = ω 𝑜 y 𝑜 ω
44 43 oveq2d A ω A ω On y On A 𝑜 ω 𝑜 suc y = A 𝑜 ω 𝑜 y 𝑜 ω
45 nnon A ω A On
46 45 ad2antrr A ω A ω On y On A On
47 oecl ω On y On ω 𝑜 y On
48 47 adantl A ω A ω On y On ω 𝑜 y On
49 omass A On ω 𝑜 y On ω On A 𝑜 ω 𝑜 y 𝑜 ω = A 𝑜 ω 𝑜 y 𝑜 ω
50 46 48 24 49 syl3anc A ω A ω On y On A 𝑜 ω 𝑜 y 𝑜 ω = A 𝑜 ω 𝑜 y 𝑜 ω
51 44 50 eqtr4d A ω A ω On y On A 𝑜 ω 𝑜 suc y = A 𝑜 ω 𝑜 y 𝑜 ω
52 51 43 eqeq12d A ω A ω On y On A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y A 𝑜 ω 𝑜 y 𝑜 ω = ω 𝑜 y 𝑜 ω
53 41 52 syl5ibr A ω A ω On y On A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
54 53 imim2d A ω A ω On y On y A 𝑜 ω 𝑜 y = ω 𝑜 y y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
55 54 com23 A ω A ω On y On y y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
56 simprr A ω A ω On y On y On
57 on0eqel y On y = y
58 56 57 syl A ω A ω On y On y = y
59 40 55 58 mpjaod A ω A ω On y On y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
60 59 a1dd A ω A ω On y On y A 𝑜 ω 𝑜 y = ω 𝑜 y suc y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
61 60 anassrs A ω A ω On y On y A 𝑜 ω 𝑜 y = ω 𝑜 y suc y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
62 61 expcom y On A ω A ω On y A 𝑜 ω 𝑜 y = ω 𝑜 y suc y A 𝑜 ω 𝑜 suc y = ω 𝑜 suc y
63 45 ad3antrrr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A On
64 simprl A ω A ω On Lim x ω On
65 simprr A ω A ω On Lim x Lim x
66 vex x V
67 65 66 jctil A ω A ω On Lim x x V Lim x
68 limelon x V Lim x x On
69 67 68 syl A ω A ω On Lim x x On
70 oecl ω On x On ω 𝑜 x On
71 64 69 70 syl2anc A ω A ω On Lim x ω 𝑜 x On
72 71 adantr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y ω 𝑜 x On
73 1onn 1 𝑜 ω
74 ondif2 ω On 2 𝑜 ω On 1 𝑜 ω
75 64 73 74 sylanblrc A ω A ω On Lim x ω On 2 𝑜
76 75 adantr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y ω On 2 𝑜
77 67 adantr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y x V Lim x
78 oelimcl ω On 2 𝑜 x V Lim x Lim ω 𝑜 x
79 76 77 78 syl2anc A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y Lim ω 𝑜 x
80 omlim A On ω 𝑜 x On Lim ω 𝑜 x A 𝑜 ω 𝑜 x = z ω 𝑜 x A 𝑜 z
81 63 72 79 80 syl12anc A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 x = z ω 𝑜 x A 𝑜 z
82 simplrl A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y ω On
83 oelim2 ω On x V Lim x ω 𝑜 x = y x 1 𝑜 ω 𝑜 y
84 82 77 83 syl2anc A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y ω 𝑜 x = y x 1 𝑜 ω 𝑜 y
85 84 eleq2d A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x z y x 1 𝑜 ω 𝑜 y
86 eliun z y x 1 𝑜 ω 𝑜 y y x 1 𝑜 z ω 𝑜 y
87 85 86 bitrdi A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x y x 1 𝑜 z ω 𝑜 y
88 69 adantr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y x On
89 anass y x y z ω 𝑜 y y x y z ω 𝑜 y
90 onelon x On y x y On
91 on0eln0 y On y y
92 90 91 syl x On y x y y
93 92 pm5.32da x On y x y y x y
94 dif1o y x 1 𝑜 y x y
95 93 94 bitr4di x On y x y y x 1 𝑜
96 95 anbi1d x On y x y z ω 𝑜 y y x 1 𝑜 z ω 𝑜 y
97 89 96 bitr3id x On y x y z ω 𝑜 y y x 1 𝑜 z ω 𝑜 y
98 97 rexbidv2 x On y x y z ω 𝑜 y y x 1 𝑜 z ω 𝑜 y
99 88 98 syl A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y x y z ω 𝑜 y y x 1 𝑜 z ω 𝑜 y
100 87 99 bitr4d A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x y x y z ω 𝑜 y
101 r19.29 y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y x y z ω 𝑜 y y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y z ω 𝑜 y
102 id y A 𝑜 ω 𝑜 y = ω 𝑜 y y A 𝑜 ω 𝑜 y = ω 𝑜 y
103 102 imp y A 𝑜 ω 𝑜 y = ω 𝑜 y y A 𝑜 ω 𝑜 y = ω 𝑜 y
104 103 anim1i y A 𝑜 ω 𝑜 y = ω 𝑜 y y z ω 𝑜 y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y
105 104 anasss y A 𝑜 ω 𝑜 y = ω 𝑜 y y z ω 𝑜 y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y
106 71 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y ω 𝑜 x On
107 eloni ω 𝑜 x On Ord ω 𝑜 x
108 106 107 syl A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y Ord ω 𝑜 x
109 simprr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y z ω 𝑜 y
110 64 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y ω On
111 69 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y x On
112 simplr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y y x
113 111 112 90 syl2anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y y On
114 110 113 47 syl2anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y ω 𝑜 y On
115 onelon ω 𝑜 y On z ω 𝑜 y z On
116 114 109 115 syl2anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y z On
117 45 ad2antrr A ω A ω On Lim x A On
118 117 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A On
119 simplr A ω A ω On Lim x A
120 119 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A
121 omord2 z On ω 𝑜 y On A On A z ω 𝑜 y A 𝑜 z A 𝑜 ω 𝑜 y
122 116 114 118 120 121 syl31anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y z ω 𝑜 y A 𝑜 z A 𝑜 ω 𝑜 y
123 109 122 mpbid A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z A 𝑜 ω 𝑜 y
124 simprl A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 ω 𝑜 y = ω 𝑜 y
125 123 124 eleqtrd A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z ω 𝑜 y
126 75 ad2antrr A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y ω On 2 𝑜
127 oeord y On x On ω On 2 𝑜 y x ω 𝑜 y ω 𝑜 x
128 113 111 126 127 syl3anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y y x ω 𝑜 y ω 𝑜 x
129 112 128 mpbid A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y ω 𝑜 y ω 𝑜 x
130 ontr1 ω 𝑜 x On A 𝑜 z ω 𝑜 y ω 𝑜 y ω 𝑜 x A 𝑜 z ω 𝑜 x
131 106 130 syl A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z ω 𝑜 y ω 𝑜 y ω 𝑜 x A 𝑜 z ω 𝑜 x
132 125 129 131 mp2and A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z ω 𝑜 x
133 ordelss Ord ω 𝑜 x A 𝑜 z ω 𝑜 x A 𝑜 z ω 𝑜 x
134 108 132 133 syl2anc A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z ω 𝑜 x
135 134 ex A ω A ω On Lim x y x A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 y A 𝑜 z ω 𝑜 x
136 105 135 syl5 A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y z ω 𝑜 y A 𝑜 z ω 𝑜 x
137 136 rexlimdva A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y z ω 𝑜 y A 𝑜 z ω 𝑜 x
138 101 137 syl5 A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y x y z ω 𝑜 y A 𝑜 z ω 𝑜 x
139 138 expdimp A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y y x y z ω 𝑜 y A 𝑜 z ω 𝑜 x
140 100 139 sylbid A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x A 𝑜 z ω 𝑜 x
141 140 ralrimiv A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x A 𝑜 z ω 𝑜 x
142 iunss z ω 𝑜 x A 𝑜 z ω 𝑜 x z ω 𝑜 x A 𝑜 z ω 𝑜 x
143 141 142 sylibr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y z ω 𝑜 x A 𝑜 z ω 𝑜 x
144 81 143 eqsstrd A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 x ω 𝑜 x
145 simpllr A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A
146 omword2 ω 𝑜 x On A On A ω 𝑜 x A 𝑜 ω 𝑜 x
147 72 63 145 146 syl21anc A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y ω 𝑜 x A 𝑜 ω 𝑜 x
148 144 147 eqssd A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 x = ω 𝑜 x
149 148 ex A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 x = ω 𝑜 x
150 149 anassrs A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y A 𝑜 ω 𝑜 x = ω 𝑜 x
151 150 a1dd A ω A ω On Lim x y x y A 𝑜 ω 𝑜 y = ω 𝑜 y x A 𝑜 ω 𝑜 x = ω 𝑜 x
152 151 expcom Lim x A ω A ω On y x y A 𝑜 ω 𝑜 y = ω 𝑜 y x A 𝑜 ω 𝑜 x = ω 𝑜 x
153 5 10 15 20 23 62 152 tfinds3 B On A ω A ω On B A 𝑜 ω 𝑜 B = ω 𝑜 B
154 153 com12 A ω A ω On B On B A 𝑜 ω 𝑜 B = ω 𝑜 B
155 154 adantrr A ω A ω On B On B On B A 𝑜 ω 𝑜 B = ω 𝑜 B
156 155 imp32 A ω A ω On B On B On B A 𝑜 ω 𝑜 B = ω 𝑜 B
157 156 an32s A ω A B On B ω On B On A 𝑜 ω 𝑜 B = ω 𝑜 B
158 nnm0 A ω A 𝑜 =
159 158 ad3antrrr A ω A B On B ¬ ω On B On A 𝑜 =
160 fnoe 𝑜 Fn On × On
161 fndm 𝑜 Fn On × On dom 𝑜 = On × On
162 160 161 ax-mp dom 𝑜 = On × On
163 162 ndmov ¬ ω On B On ω 𝑜 B =
164 163 adantl A ω A B On B ¬ ω On B On ω 𝑜 B =
165 164 oveq2d A ω A B On B ¬ ω On B On A 𝑜 ω 𝑜 B = A 𝑜
166 159 165 164 3eqtr4d A ω A B On B ¬ ω On B On A 𝑜 ω 𝑜 B = ω 𝑜 B
167 157 166 pm2.61dan A ω A B On B A 𝑜 ω 𝑜 B = ω 𝑜 B