Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
oveq2d |
|
4 |
3 2
|
eqeq12d |
|
5 |
1 4
|
imbi12d |
|
6 |
|
eleq2 |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq2d |
|
9 |
8 7
|
eqeq12d |
|
10 |
6 9
|
imbi12d |
|
11 |
|
eleq2 |
|
12 |
|
oveq2 |
|
13 |
12
|
oveq2d |
|
14 |
13 12
|
eqeq12d |
|
15 |
11 14
|
imbi12d |
|
16 |
|
eleq2 |
|
17 |
|
oveq2 |
|
18 |
17
|
oveq2d |
|
19 |
18 17
|
eqeq12d |
|
20 |
16 19
|
imbi12d |
|
21 |
|
noel |
|
22 |
21
|
pm2.21i |
|
23 |
22
|
a1i |
|
24 |
|
simprl |
|
25 |
|
simpll |
|
26 |
|
simplr |
|
27 |
|
omabslem |
|
28 |
24 25 26 27
|
syl3anc |
|
29 |
28
|
adantr |
|
30 |
|
suceq |
|
31 |
|
df-1o |
|
32 |
30 31
|
eqtr4di |
|
33 |
32
|
oveq2d |
|
34 |
|
oe1 |
|
35 |
34
|
ad2antrl |
|
36 |
33 35
|
sylan9eqr |
|
37 |
36
|
oveq2d |
|
38 |
29 37 36
|
3eqtr4d |
|
39 |
38
|
ex |
|
40 |
39
|
a1dd |
|
41 |
|
oveq1 |
|
42 |
|
oesuc |
|
43 |
42
|
adantl |
|
44 |
43
|
oveq2d |
|
45 |
|
nnon |
|
46 |
45
|
ad2antrr |
|
47 |
|
oecl |
|
48 |
47
|
adantl |
|
49 |
|
omass |
|
50 |
46 48 24 49
|
syl3anc |
|
51 |
44 50
|
eqtr4d |
|
52 |
51 43
|
eqeq12d |
|
53 |
41 52
|
syl5ibr |
|
54 |
53
|
imim2d |
|
55 |
54
|
com23 |
|
56 |
|
simprr |
|
57 |
|
on0eqel |
|
58 |
56 57
|
syl |
|
59 |
40 55 58
|
mpjaod |
|
60 |
59
|
a1dd |
|
61 |
60
|
anassrs |
|
62 |
61
|
expcom |
|
63 |
45
|
ad3antrrr |
|
64 |
|
simprl |
|
65 |
|
simprr |
|
66 |
|
vex |
|
67 |
65 66
|
jctil |
|
68 |
|
limelon |
|
69 |
67 68
|
syl |
|
70 |
|
oecl |
|
71 |
64 69 70
|
syl2anc |
|
72 |
71
|
adantr |
|
73 |
|
1onn |
|
74 |
|
ondif2 |
|
75 |
64 73 74
|
sylanblrc |
|
76 |
75
|
adantr |
|
77 |
67
|
adantr |
|
78 |
|
oelimcl |
|
79 |
76 77 78
|
syl2anc |
|
80 |
|
omlim |
|
81 |
63 72 79 80
|
syl12anc |
|
82 |
|
simplrl |
|
83 |
|
oelim2 |
|
84 |
82 77 83
|
syl2anc |
|
85 |
84
|
eleq2d |
|
86 |
|
eliun |
|
87 |
85 86
|
bitrdi |
|
88 |
69
|
adantr |
|
89 |
|
anass |
|
90 |
|
onelon |
|
91 |
|
on0eln0 |
|
92 |
90 91
|
syl |
|
93 |
92
|
pm5.32da |
|
94 |
|
dif1o |
|
95 |
93 94
|
bitr4di |
|
96 |
95
|
anbi1d |
|
97 |
89 96
|
bitr3id |
|
98 |
97
|
rexbidv2 |
|
99 |
88 98
|
syl |
|
100 |
87 99
|
bitr4d |
|
101 |
|
r19.29 |
|
102 |
|
id |
|
103 |
102
|
imp |
|
104 |
103
|
anim1i |
|
105 |
104
|
anasss |
|
106 |
71
|
ad2antrr |
|
107 |
|
eloni |
|
108 |
106 107
|
syl |
|
109 |
|
simprr |
|
110 |
64
|
ad2antrr |
|
111 |
69
|
ad2antrr |
|
112 |
|
simplr |
|
113 |
111 112 90
|
syl2anc |
|
114 |
110 113 47
|
syl2anc |
|
115 |
|
onelon |
|
116 |
114 109 115
|
syl2anc |
|
117 |
45
|
ad2antrr |
|
118 |
117
|
ad2antrr |
|
119 |
|
simplr |
|
120 |
119
|
ad2antrr |
|
121 |
|
omord2 |
|
122 |
116 114 118 120 121
|
syl31anc |
|
123 |
109 122
|
mpbid |
|
124 |
|
simprl |
|
125 |
123 124
|
eleqtrd |
|
126 |
75
|
ad2antrr |
|
127 |
|
oeord |
|
128 |
113 111 126 127
|
syl3anc |
|
129 |
112 128
|
mpbid |
|
130 |
|
ontr1 |
|
131 |
106 130
|
syl |
|
132 |
125 129 131
|
mp2and |
|
133 |
|
ordelss |
|
134 |
108 132 133
|
syl2anc |
|
135 |
134
|
ex |
|
136 |
105 135
|
syl5 |
|
137 |
136
|
rexlimdva |
|
138 |
101 137
|
syl5 |
|
139 |
138
|
expdimp |
|
140 |
100 139
|
sylbid |
|
141 |
140
|
ralrimiv |
|
142 |
|
iunss |
|
143 |
141 142
|
sylibr |
|
144 |
81 143
|
eqsstrd |
|
145 |
|
simpllr |
|
146 |
|
omword2 |
|
147 |
72 63 145 146
|
syl21anc |
|
148 |
144 147
|
eqssd |
|
149 |
148
|
ex |
|
150 |
149
|
anassrs |
|
151 |
150
|
a1dd |
|
152 |
151
|
expcom |
|
153 |
5 10 15 20 23 62 152
|
tfinds3 |
|
154 |
153
|
com12 |
|
155 |
154
|
adantrr |
|
156 |
155
|
imp32 |
|
157 |
156
|
an32s |
|
158 |
|
nnm0 |
|
159 |
158
|
ad3antrrr |
|
160 |
|
fnoe |
|
161 |
|
fndm |
|
162 |
160 161
|
ax-mp |
|
163 |
162
|
ndmov |
|
164 |
163
|
adantl |
|
165 |
164
|
oveq2d |
|
166 |
159 165 164
|
3eqtr4d |
|
167 |
157 166
|
pm2.61dan |
|