Metamath Proof Explorer


Theorem omabslem

Description: Lemma for omabs . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion omabslem ω On A ω A A 𝑜 ω = ω

Proof

Step Hyp Ref Expression
1 nnon A ω A On
2 limom Lim ω
3 2 jctr ω On ω On Lim ω
4 omlim A On ω On Lim ω A 𝑜 ω = x ω A 𝑜 x
5 1 3 4 syl2an A ω ω On A 𝑜 ω = x ω A 𝑜 x
6 ordom Ord ω
7 nnmcl A ω x ω A 𝑜 x ω
8 ordelss Ord ω A 𝑜 x ω A 𝑜 x ω
9 6 7 8 sylancr A ω x ω A 𝑜 x ω
10 9 ralrimiva A ω x ω A 𝑜 x ω
11 iunss x ω A 𝑜 x ω x ω A 𝑜 x ω
12 10 11 sylibr A ω x ω A 𝑜 x ω
13 12 adantr A ω ω On x ω A 𝑜 x ω
14 5 13 eqsstrd A ω ω On A 𝑜 ω ω
15 14 ancoms ω On A ω A 𝑜 ω ω
16 15 3adant3 ω On A ω A A 𝑜 ω ω
17 omword2 ω On A On A ω A 𝑜 ω
18 17 3impa ω On A On A ω A 𝑜 ω
19 1 18 syl3an2 ω On A ω A ω A 𝑜 ω
20 16 19 eqssd ω On A ω A A 𝑜 ω = ω