Metamath Proof Explorer


Theorem omass

Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of TakeutiZaring p. 65. (Contributed by NM, 28-Dec-2004)

Ref Expression
Assertion omass A On B On C On A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜
2 oveq2 x = B 𝑜 x = B 𝑜
3 2 oveq2d x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜
4 1 3 eqeq12d x = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 = A 𝑜 B 𝑜
5 oveq2 x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 y
6 oveq2 x = y B 𝑜 x = B 𝑜 y
7 6 oveq2d x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 y
8 5 7 eqeq12d x = y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y
9 oveq2 x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 suc y
10 oveq2 x = suc y B 𝑜 x = B 𝑜 suc y
11 10 oveq2d x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 suc y
12 9 11 eqeq12d x = suc y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
13 oveq2 x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 C
14 oveq2 x = C B 𝑜 x = B 𝑜 C
15 14 oveq2d x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 C
16 13 15 eqeq12d x = C A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
17 omcl A On B On A 𝑜 B On
18 om0 A 𝑜 B On A 𝑜 B 𝑜 =
19 17 18 syl A On B On A 𝑜 B 𝑜 =
20 om0 B On B 𝑜 =
21 20 oveq2d B On A 𝑜 B 𝑜 = A 𝑜
22 om0 A On A 𝑜 =
23 21 22 sylan9eqr A On B On A 𝑜 B 𝑜 =
24 19 23 eqtr4d A On B On A 𝑜 B 𝑜 = A 𝑜 B 𝑜
25 oveq1 A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
26 omsuc A 𝑜 B On y On A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
27 17 26 stoic3 A On B On y On A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
28 omsuc B On y On B 𝑜 suc y = B 𝑜 y + 𝑜 B
29 28 3adant1 A On B On y On B 𝑜 suc y = B 𝑜 y + 𝑜 B
30 29 oveq2d A On B On y On A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 B
31 omcl B On y On B 𝑜 y On
32 odi A On B 𝑜 y On B On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
33 31 32 syl3an2 A On B On y On B On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
34 33 3exp A On B On y On B On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
35 34 expd A On B On y On B On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
36 35 com34 A On B On B On y On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
37 36 pm2.43d A On B On y On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
38 37 3imp A On B On y On A 𝑜 B 𝑜 y + 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
39 30 38 eqtrd A On B On y On A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
40 27 39 eqeq12d A On B On y On A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B = A 𝑜 B 𝑜 y + 𝑜 A 𝑜 B
41 25 40 syl5ibr A On B On y On A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
42 41 3exp A On B On y On A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
43 42 com3r y On A On B On A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
44 43 impd y On A On B On A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 suc y = A 𝑜 B 𝑜 suc y
45 17 ancoms B On A On A 𝑜 B On
46 vex x V
47 omlim A 𝑜 B On x V Lim x A 𝑜 B 𝑜 x = y x A 𝑜 B 𝑜 y
48 46 47 mpanr1 A 𝑜 B On Lim x A 𝑜 B 𝑜 x = y x A 𝑜 B 𝑜 y
49 45 48 sylan B On A On Lim x A 𝑜 B 𝑜 x = y x A 𝑜 B 𝑜 y
50 49 an32s B On Lim x A On A 𝑜 B 𝑜 x = y x A 𝑜 B 𝑜 y
51 50 ad2antrr B On Lim x A On B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = y x A 𝑜 B 𝑜 y
52 iuneq2 y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y y x A 𝑜 B 𝑜 y = y x A 𝑜 B 𝑜 y
53 limelon x V Lim x x On
54 46 53 mpan Lim x x On
55 54 anim1i Lim x B On x On B On
56 55 ancoms B On Lim x x On B On
57 omordi x On B On B y x B 𝑜 y B 𝑜 x
58 56 57 sylan B On Lim x B y x B 𝑜 y B 𝑜 x
59 ssid A 𝑜 B 𝑜 y A 𝑜 B 𝑜 y
60 oveq2 z = B 𝑜 y A 𝑜 z = A 𝑜 B 𝑜 y
61 60 sseq2d z = B 𝑜 y A 𝑜 B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y A 𝑜 B 𝑜 y
62 61 rspcev B 𝑜 y B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 B 𝑜 y z B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 z
63 59 62 mpan2 B 𝑜 y B 𝑜 x z B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 z
64 58 63 syl6 B On Lim x B y x z B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 z
65 64 ralrimiv B On Lim x B y x z B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 z
66 iunss2 y x z B 𝑜 x A 𝑜 B 𝑜 y A 𝑜 z y x A 𝑜 B 𝑜 y z B 𝑜 x A 𝑜 z
67 65 66 syl B On Lim x B y x A 𝑜 B 𝑜 y z B 𝑜 x A 𝑜 z
68 67 adantlr B On Lim x A On B y x A 𝑜 B 𝑜 y z B 𝑜 x A 𝑜 z
69 omcl B On x On B 𝑜 x On
70 54 69 sylan2 B On Lim x B 𝑜 x On
71 onelon B 𝑜 x On z B 𝑜 x z On
72 70 71 sylan B On Lim x z B 𝑜 x z On
73 72 adantlr B On Lim x A On z B 𝑜 x z On
74 omordlim B On x V Lim x z B 𝑜 x y x z B 𝑜 y
75 74 ex B On x V Lim x z B 𝑜 x y x z B 𝑜 y
76 46 75 mpanr1 B On Lim x z B 𝑜 x y x z B 𝑜 y
77 76 ad2antlr z On B On Lim x A On z B 𝑜 x y x z B 𝑜 y
78 onelon x On y x y On
79 54 78 sylan Lim x y x y On
80 79 31 sylan2 B On Lim x y x B 𝑜 y On
81 onelss B 𝑜 y On z B 𝑜 y z B 𝑜 y
82 81 3ad2ant2 z On B 𝑜 y On A On z B 𝑜 y z B 𝑜 y
83 omwordi z On B 𝑜 y On A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
84 82 83 syld z On B 𝑜 y On A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
85 84 3exp z On B 𝑜 y On A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
86 80 85 syl5 z On B On Lim x y x A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
87 86 exp4d z On B On Lim x y x A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
88 87 imp32 z On B On Lim x y x A On z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
89 88 com23 z On B On Lim x A On y x z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
90 89 imp z On B On Lim x A On y x z B 𝑜 y A 𝑜 z A 𝑜 B 𝑜 y
91 90 reximdvai z On B On Lim x A On y x z B 𝑜 y y x A 𝑜 z A 𝑜 B 𝑜 y
92 77 91 syld z On B On Lim x A On z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y
93 92 exp31 z On B On Lim x A On z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y
94 93 imp4c z On B On Lim x A On z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y
95 73 94 mpcom B On Lim x A On z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y
96 95 ralrimiva B On Lim x A On z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y
97 iunss2 z B 𝑜 x y x A 𝑜 z A 𝑜 B 𝑜 y z B 𝑜 x A 𝑜 z y x A 𝑜 B 𝑜 y
98 96 97 syl B On Lim x A On z B 𝑜 x A 𝑜 z y x A 𝑜 B 𝑜 y
99 98 adantr B On Lim x A On B z B 𝑜 x A 𝑜 z y x A 𝑜 B 𝑜 y
100 68 99 eqssd B On Lim x A On B y x A 𝑜 B 𝑜 y = z B 𝑜 x A 𝑜 z
101 omlimcl B On x V Lim x B Lim B 𝑜 x
102 46 101 mpanlr1 B On Lim x B Lim B 𝑜 x
103 ovex B 𝑜 x V
104 omlim A On B 𝑜 x V Lim B 𝑜 x A 𝑜 B 𝑜 x = z B 𝑜 x A 𝑜 z
105 103 104 mpanr1 A On Lim B 𝑜 x A 𝑜 B 𝑜 x = z B 𝑜 x A 𝑜 z
106 102 105 sylan2 A On B On Lim x B A 𝑜 B 𝑜 x = z B 𝑜 x A 𝑜 z
107 106 ancoms B On Lim x B A On A 𝑜 B 𝑜 x = z B 𝑜 x A 𝑜 z
108 107 an32s B On Lim x A On B A 𝑜 B 𝑜 x = z B 𝑜 x A 𝑜 z
109 100 108 eqtr4d B On Lim x A On B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 x
110 52 109 sylan9eqr B On Lim x A On B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 x
111 51 110 eqtrd B On Lim x A On B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
112 111 exp31 B On Lim x A On B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
113 eloni B On Ord B
114 ord0eln0 Ord B B B
115 114 necon2bbid Ord B B = ¬ B
116 113 115 syl B On B = ¬ B
117 116 ad2antrr B On Lim x A On B = ¬ B
118 oveq2 B = A 𝑜 B = A 𝑜
119 118 22 sylan9eqr A On B = A 𝑜 B =
120 119 oveq1d A On B = A 𝑜 B 𝑜 x = 𝑜 x
121 om0r x On 𝑜 x =
122 120 121 sylan9eqr x On A On B = A 𝑜 B 𝑜 x =
123 122 anassrs x On A On B = A 𝑜 B 𝑜 x =
124 oveq1 B = B 𝑜 x = 𝑜 x
125 124 121 sylan9eqr x On B = B 𝑜 x =
126 125 oveq2d x On B = A 𝑜 B 𝑜 x = A 𝑜
127 126 22 sylan9eq x On B = A On A 𝑜 B 𝑜 x =
128 127 an32s x On A On B = A 𝑜 B 𝑜 x =
129 123 128 eqtr4d x On A On B = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
130 129 ex x On A On B = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
131 54 130 sylan Lim x A On B = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
132 131 adantll B On Lim x A On B = A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
133 117 132 sylbird B On Lim x A On ¬ B A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
134 133 a1dd B On Lim x A On ¬ B y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
135 112 134 pm2.61d B On Lim x A On y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
136 135 exp31 B On Lim x A On y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
137 136 com3l Lim x A On B On y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
138 137 impd Lim x A On B On y x A 𝑜 B 𝑜 y = A 𝑜 B 𝑜 y A 𝑜 B 𝑜 x = A 𝑜 B 𝑜 x
139 4 8 12 16 24 44 138 tfinds3 C On A On B On A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
140 139 expd C On A On B On A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
141 140 com3l A On B On C On A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C
142 141 3imp A On B On C On A 𝑜 B 𝑜 C = A 𝑜 B 𝑜 C