Metamath Proof Explorer


Theorem omcl

Description: Closure law for ordinal multiplication. Proposition 8.16 of TakeutiZaring p. 57. (Contributed by NM, 3-Aug-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion omcl A On B On A 𝑜 B On

Proof

Step Hyp Ref Expression
1 oveq2 x = A 𝑜 x = A 𝑜
2 1 eleq1d x = A 𝑜 x On A 𝑜 On
3 oveq2 x = y A 𝑜 x = A 𝑜 y
4 3 eleq1d x = y A 𝑜 x On A 𝑜 y On
5 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
6 5 eleq1d x = suc y A 𝑜 x On A 𝑜 suc y On
7 oveq2 x = B A 𝑜 x = A 𝑜 B
8 7 eleq1d x = B A 𝑜 x On A 𝑜 B On
9 om0 A On A 𝑜 =
10 0elon On
11 9 10 eqeltrdi A On A 𝑜 On
12 oacl A 𝑜 y On A On A 𝑜 y + 𝑜 A On
13 12 expcom A On A 𝑜 y On A 𝑜 y + 𝑜 A On
14 13 adantr A On y On A 𝑜 y On A 𝑜 y + 𝑜 A On
15 omsuc A On y On A 𝑜 suc y = A 𝑜 y + 𝑜 A
16 15 eleq1d A On y On A 𝑜 suc y On A 𝑜 y + 𝑜 A On
17 14 16 sylibrd A On y On A 𝑜 y On A 𝑜 suc y On
18 17 expcom y On A On A 𝑜 y On A 𝑜 suc y On
19 vex x V
20 iunon x V y x A 𝑜 y On y x A 𝑜 y On
21 19 20 mpan y x A 𝑜 y On y x A 𝑜 y On
22 omlim A On x V Lim x A 𝑜 x = y x A 𝑜 y
23 19 22 mpanr1 A On Lim x A 𝑜 x = y x A 𝑜 y
24 23 eleq1d A On Lim x A 𝑜 x On y x A 𝑜 y On
25 21 24 syl5ibr A On Lim x y x A 𝑜 y On A 𝑜 x On
26 25 expcom Lim x A On y x A 𝑜 y On A 𝑜 x On
27 2 4 6 8 11 18 26 tfinds3 B On A On A 𝑜 B On
28 27 impcom A On B On A 𝑜 B On