Metamath Proof Explorer


Theorem omeo

Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion omeo A ¬ 2 A B 2 B ¬ 2 A B

Proof

Step Hyp Ref Expression
1 odd2np1 A ¬ 2 A a 2 a + 1 = A
2 2z 2
3 divides 2 B 2 B b b 2 = B
4 2 3 mpan B 2 B b b 2 = B
5 1 4 bi2anan9 A B ¬ 2 A 2 B a 2 a + 1 = A b b 2 = B
6 reeanv a b 2 a + 1 = A b 2 = B a 2 a + 1 = A b b 2 = B
7 zsubcl a b a b
8 zcn a a
9 zcn b b
10 2cn 2
11 subdi 2 a b 2 a b = 2 a 2 b
12 10 11 mp3an1 a b 2 a b = 2 a 2 b
13 12 oveq1d a b 2 a b + 1 = 2 a - 2 b + 1
14 mulcl 2 a 2 a
15 10 14 mpan a 2 a
16 mulcl 2 b 2 b
17 10 16 mpan b 2 b
18 ax-1cn 1
19 addsub 2 a 1 2 b 2 a + 1 - 2 b = 2 a - 2 b + 1
20 18 19 mp3an2 2 a 2 b 2 a + 1 - 2 b = 2 a - 2 b + 1
21 15 17 20 syl2an a b 2 a + 1 - 2 b = 2 a - 2 b + 1
22 mulcom 2 b 2 b = b 2
23 10 22 mpan b 2 b = b 2
24 23 oveq2d b 2 a + 1 - 2 b = 2 a + 1 - b 2
25 24 adantl a b 2 a + 1 - 2 b = 2 a + 1 - b 2
26 13 21 25 3eqtr2d a b 2 a b + 1 = 2 a + 1 - b 2
27 8 9 26 syl2an a b 2 a b + 1 = 2 a + 1 - b 2
28 oveq2 c = a b 2 c = 2 a b
29 28 oveq1d c = a b 2 c + 1 = 2 a b + 1
30 29 eqeq1d c = a b 2 c + 1 = 2 a + 1 - b 2 2 a b + 1 = 2 a + 1 - b 2
31 30 rspcev a b 2 a b + 1 = 2 a + 1 - b 2 c 2 c + 1 = 2 a + 1 - b 2
32 7 27 31 syl2anc a b c 2 c + 1 = 2 a + 1 - b 2
33 oveq12 2 a + 1 = A b 2 = B 2 a + 1 - b 2 = A B
34 33 eqeq2d 2 a + 1 = A b 2 = B 2 c + 1 = 2 a + 1 - b 2 2 c + 1 = A B
35 34 rexbidv 2 a + 1 = A b 2 = B c 2 c + 1 = 2 a + 1 - b 2 c 2 c + 1 = A B
36 32 35 syl5ibcom a b 2 a + 1 = A b 2 = B c 2 c + 1 = A B
37 36 rexlimivv a b 2 a + 1 = A b 2 = B c 2 c + 1 = A B
38 6 37 sylbir a 2 a + 1 = A b b 2 = B c 2 c + 1 = A B
39 5 38 syl6bi A B ¬ 2 A 2 B c 2 c + 1 = A B
40 39 imp A B ¬ 2 A 2 B c 2 c + 1 = A B
41 40 an4s A ¬ 2 A B 2 B c 2 c + 1 = A B
42 zsubcl A B A B
43 42 ad2ant2r A ¬ 2 A B 2 B A B
44 odd2np1 A B ¬ 2 A B c 2 c + 1 = A B
45 43 44 syl A ¬ 2 A B 2 B ¬ 2 A B c 2 c + 1 = A B
46 41 45 mpbird A ¬ 2 A B 2 B ¬ 2 A B