| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  | 
						
							| 2 |  | onsucb |  | 
						
							| 3 | 1 2 | sylib |  | 
						
							| 4 |  | simp1 |  | 
						
							| 5 |  | on0eln0 |  | 
						
							| 6 | 5 | biimpar |  | 
						
							| 7 | 6 | 3adant2 |  | 
						
							| 8 |  | omword2 |  | 
						
							| 9 | 3 4 7 8 | syl21anc |  | 
						
							| 10 |  | sucidg |  | 
						
							| 11 |  | ssel |  | 
						
							| 12 | 10 11 | syl5 |  | 
						
							| 13 | 9 1 12 | sylc |  | 
						
							| 14 |  | suceq |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 | 15 | eleq2d |  | 
						
							| 17 | 16 | rspcev |  | 
						
							| 18 | 1 13 17 | syl2anc |  | 
						
							| 19 |  | suceq |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 20 | eleq2d |  | 
						
							| 22 | 21 | onminex |  | 
						
							| 23 |  | vex |  | 
						
							| 24 | 23 | elon |  | 
						
							| 25 |  | ordzsl |  | 
						
							| 26 | 24 25 | bitri |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 |  | om0 |  | 
						
							| 29 | 27 28 | sylan9eqr |  | 
						
							| 30 |  | ne0i |  | 
						
							| 31 | 30 | necon2bi |  | 
						
							| 32 | 29 31 | syl |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | a1d |  | 
						
							| 35 | 34 | 3ad2ant1 |  | 
						
							| 36 | 35 | imp |  | 
						
							| 37 |  | simp3 |  | 
						
							| 38 |  | simp2 |  | 
						
							| 39 |  | raleq |  | 
						
							| 40 |  | vex |  | 
						
							| 41 | 40 | sucid |  | 
						
							| 42 |  | suceq |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 | 43 | eleq2d |  | 
						
							| 45 | 44 | notbid |  | 
						
							| 46 | 45 | rspcv |  | 
						
							| 47 | 41 46 | ax-mp |  | 
						
							| 48 | 39 47 | biimtrdi |  | 
						
							| 49 | 37 38 48 | sylc |  | 
						
							| 50 |  | oveq2 |  | 
						
							| 51 | 50 | eleq2d |  | 
						
							| 52 | 51 | notbid |  | 
						
							| 53 | 52 | biimpar |  | 
						
							| 54 | 37 49 53 | syl2anc |  | 
						
							| 55 | 54 | 3expia |  | 
						
							| 56 | 55 | rexlimdvw |  | 
						
							| 57 |  | ralnex |  | 
						
							| 58 |  | simpr |  | 
						
							| 59 | 23 | a1i |  | 
						
							| 60 |  | simpl |  | 
						
							| 61 |  | omlim |  | 
						
							| 62 | 58 59 60 61 | syl12anc |  | 
						
							| 63 | 62 | eleq2d |  | 
						
							| 64 |  | eliun |  | 
						
							| 65 |  | limord |  | 
						
							| 66 | 65 | 3ad2ant1 |  | 
						
							| 67 | 66 24 | sylibr |  | 
						
							| 68 |  | simp3 |  | 
						
							| 69 |  | onelon |  | 
						
							| 70 | 67 68 69 | syl2anc |  | 
						
							| 71 |  | onsuc |  | 
						
							| 72 | 70 71 | syl |  | 
						
							| 73 |  | simp2 |  | 
						
							| 74 |  | sssucid |  | 
						
							| 75 |  | omwordi |  | 
						
							| 76 | 74 75 | mpi |  | 
						
							| 77 | 70 72 73 76 | syl3anc |  | 
						
							| 78 | 77 | sseld |  | 
						
							| 79 | 78 | 3expia |  | 
						
							| 80 | 79 | reximdvai |  | 
						
							| 81 | 64 80 | biimtrid |  | 
						
							| 82 | 63 81 | sylbid |  | 
						
							| 83 | 82 | con3d |  | 
						
							| 84 | 57 83 | biimtrid |  | 
						
							| 85 | 84 | expimpd |  | 
						
							| 86 | 85 | com12 |  | 
						
							| 87 | 86 | 3ad2antl1 |  | 
						
							| 88 | 36 56 87 | 3jaod |  | 
						
							| 89 | 26 88 | biimtrid |  | 
						
							| 90 | 89 | impr |  | 
						
							| 91 |  | simpl1 |  | 
						
							| 92 |  | simprr |  | 
						
							| 93 |  | omcl |  | 
						
							| 94 | 91 92 93 | syl2anc |  | 
						
							| 95 |  | simpl2 |  | 
						
							| 96 |  | ontri1 |  | 
						
							| 97 | 94 95 96 | syl2anc |  | 
						
							| 98 | 90 97 | mpbird |  | 
						
							| 99 |  | oawordex |  | 
						
							| 100 | 94 95 99 | syl2anc |  | 
						
							| 101 | 98 100 | mpbid |  | 
						
							| 102 | 101 | 3adantr1 |  | 
						
							| 103 |  | simp3r |  | 
						
							| 104 |  | simp21 |  | 
						
							| 105 |  | simp11 |  | 
						
							| 106 |  | simp23 |  | 
						
							| 107 |  | omsuc |  | 
						
							| 108 | 105 106 107 | syl2anc |  | 
						
							| 109 | 104 108 | eleqtrd |  | 
						
							| 110 | 103 109 | eqeltrd |  | 
						
							| 111 |  | simp3l |  | 
						
							| 112 | 105 106 93 | syl2anc |  | 
						
							| 113 |  | oaord |  | 
						
							| 114 | 111 105 112 113 | syl3anc |  | 
						
							| 115 | 110 114 | mpbird |  | 
						
							| 116 | 115 103 | jca |  | 
						
							| 117 | 116 | 3expia |  | 
						
							| 118 | 117 | reximdv2 |  | 
						
							| 119 | 102 118 | mpd |  | 
						
							| 120 | 119 | expcom |  | 
						
							| 121 | 120 | 3expia |  | 
						
							| 122 | 121 | com13 |  | 
						
							| 123 | 122 | reximdvai |  | 
						
							| 124 | 22 123 | syl5 |  | 
						
							| 125 | 18 124 | mpd |  |