Metamath Proof Explorer


Theorem omeulem2

Description: Lemma for omeu : uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion omeulem2 A On A B On C A D On E A B D B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E

Proof

Step Hyp Ref Expression
1 simp3l A On A B On C A D On E A D On
2 eloni D On Ord D
3 ordsucss Ord D B D suc B D
4 1 2 3 3syl A On A B On C A D On E A B D suc B D
5 simp2l A On A B On C A D On E A B On
6 suceloni B On suc B On
7 5 6 syl A On A B On C A D On E A suc B On
8 simp1l A On A B On C A D On E A A On
9 simp1r A On A B On C A D On E A A
10 on0eln0 A On A A
11 8 10 syl A On A B On C A D On E A A A
12 9 11 mpbird A On A B On C A D On E A A
13 omword suc B On D On A On A suc B D A 𝑜 suc B A 𝑜 D
14 7 1 8 12 13 syl31anc A On A B On C A D On E A suc B D A 𝑜 suc B A 𝑜 D
15 4 14 sylibd A On A B On C A D On E A B D A 𝑜 suc B A 𝑜 D
16 omcl A On D On A 𝑜 D On
17 8 1 16 syl2anc A On A B On C A D On E A A 𝑜 D On
18 simp3r A On A B On C A D On E A E A
19 onelon A On E A E On
20 8 18 19 syl2anc A On A B On C A D On E A E On
21 oaword1 A 𝑜 D On E On A 𝑜 D A 𝑜 D + 𝑜 E
22 sstr A 𝑜 suc B A 𝑜 D A 𝑜 D A 𝑜 D + 𝑜 E A 𝑜 suc B A 𝑜 D + 𝑜 E
23 22 expcom A 𝑜 D A 𝑜 D + 𝑜 E A 𝑜 suc B A 𝑜 D A 𝑜 suc B A 𝑜 D + 𝑜 E
24 21 23 syl A 𝑜 D On E On A 𝑜 suc B A 𝑜 D A 𝑜 suc B A 𝑜 D + 𝑜 E
25 17 20 24 syl2anc A On A B On C A D On E A A 𝑜 suc B A 𝑜 D A 𝑜 suc B A 𝑜 D + 𝑜 E
26 15 25 syld A On A B On C A D On E A B D A 𝑜 suc B A 𝑜 D + 𝑜 E
27 simp2r A On A B On C A D On E A C A
28 onelon A On C A C On
29 8 27 28 syl2anc A On A B On C A D On E A C On
30 omcl A On B On A 𝑜 B On
31 8 5 30 syl2anc A On A B On C A D On E A A 𝑜 B On
32 oaord C On A On A 𝑜 B On C A A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 A
33 32 biimpa C On A On A 𝑜 B On C A A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 A
34 29 8 31 27 33 syl31anc A On A B On C A D On E A A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 A
35 omsuc A On B On A 𝑜 suc B = A 𝑜 B + 𝑜 A
36 8 5 35 syl2anc A On A B On C A D On E A A 𝑜 suc B = A 𝑜 B + 𝑜 A
37 34 36 eleqtrrd A On A B On C A D On E A A 𝑜 B + 𝑜 C A 𝑜 suc B
38 ssel A 𝑜 suc B A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C A 𝑜 suc B A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
39 26 37 38 syl6ci A On A B On C A D On E A B D A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
40 simpr B = D C E C E
41 oaord C On E On A 𝑜 B On C E A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 E
42 40 41 syl5ib C On E On A 𝑜 B On B = D C E A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 E
43 oveq2 B = D A 𝑜 B = A 𝑜 D
44 43 oveq1d B = D A 𝑜 B + 𝑜 E = A 𝑜 D + 𝑜 E
45 44 adantr B = D C E A 𝑜 B + 𝑜 E = A 𝑜 D + 𝑜 E
46 45 eleq2d B = D C E A 𝑜 B + 𝑜 C A 𝑜 B + 𝑜 E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
47 42 46 mpbidi C On E On A 𝑜 B On B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
48 29 20 31 47 syl3anc A On A B On C A D On E A B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
49 39 48 jaod A On A B On C A D On E A B D B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E