Metamath Proof Explorer


Theorem omf1o

Description: Construct an explicit bijection from A .o B to B .o A . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses omf1o.1 F = x B , y A A 𝑜 x + 𝑜 y
omf1o.2 G = x B , y A B 𝑜 y + 𝑜 x
Assertion omf1o A On B On G F -1 : A 𝑜 B 1-1 onto B 𝑜 A

Proof

Step Hyp Ref Expression
1 omf1o.1 F = x B , y A A 𝑜 x + 𝑜 y
2 omf1o.2 G = x B , y A B 𝑜 y + 𝑜 x
3 eqid y A , x B B 𝑜 y + 𝑜 x = y A , x B B 𝑜 y + 𝑜 x
4 3 omxpenlem B On A On y A , x B B 𝑜 y + 𝑜 x : A × B 1-1 onto B 𝑜 A
5 4 ancoms A On B On y A , x B B 𝑜 y + 𝑜 x : A × B 1-1 onto B 𝑜 A
6 eqid z B × A z -1 = z B × A z -1
7 6 xpcomf1o z B × A z -1 : B × A 1-1 onto A × B
8 f1oco y A , x B B 𝑜 y + 𝑜 x : A × B 1-1 onto B 𝑜 A z B × A z -1 : B × A 1-1 onto A × B y A , x B B 𝑜 y + 𝑜 x z B × A z -1 : B × A 1-1 onto B 𝑜 A
9 5 7 8 sylancl A On B On y A , x B B 𝑜 y + 𝑜 x z B × A z -1 : B × A 1-1 onto B 𝑜 A
10 6 3 xpcomco y A , x B B 𝑜 y + 𝑜 x z B × A z -1 = x B , y A B 𝑜 y + 𝑜 x
11 2 10 eqtr4i G = y A , x B B 𝑜 y + 𝑜 x z B × A z -1
12 f1oeq1 G = y A , x B B 𝑜 y + 𝑜 x z B × A z -1 G : B × A 1-1 onto B 𝑜 A y A , x B B 𝑜 y + 𝑜 x z B × A z -1 : B × A 1-1 onto B 𝑜 A
13 11 12 ax-mp G : B × A 1-1 onto B 𝑜 A y A , x B B 𝑜 y + 𝑜 x z B × A z -1 : B × A 1-1 onto B 𝑜 A
14 9 13 sylibr A On B On G : B × A 1-1 onto B 𝑜 A
15 1 omxpenlem A On B On F : B × A 1-1 onto A 𝑜 B
16 f1ocnv F : B × A 1-1 onto A 𝑜 B F -1 : A 𝑜 B 1-1 onto B × A
17 15 16 syl A On B On F -1 : A 𝑜 B 1-1 onto B × A
18 f1oco G : B × A 1-1 onto B 𝑜 A F -1 : A 𝑜 B 1-1 onto B × A G F -1 : A 𝑜 B 1-1 onto B 𝑜 A
19 14 17 18 syl2anc A On B On G F -1 : A 𝑜 B 1-1 onto B 𝑜 A