Metamath Proof Explorer


Theorem omina

Description: _om is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow _om as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for _om .) (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion omina ω Inacc

Proof

Step Hyp Ref Expression
1 peano1 ω
2 1 ne0ii ω
3 cfom cf ω = ω
4 nnfi x ω x Fin
5 pwfi x Fin 𝒫 x Fin
6 4 5 sylib x ω 𝒫 x Fin
7 isfinite 𝒫 x Fin 𝒫 x ω
8 6 7 sylib x ω 𝒫 x ω
9 8 rgen x ω 𝒫 x ω
10 elina ω Inacc ω cf ω = ω x ω 𝒫 x ω
11 2 3 9 10 mpbir3an ω Inacc