Metamath Proof Explorer


Theorem ominf4

Description: _om is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Proof shortened by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ominf4 ¬ ω FinIV

Proof

Step Hyp Ref Expression
1 id ω FinIV ω FinIV
2 peano1 ω
3 difsnpss ω ω ω
4 2 3 mpbi ω ω
5 limom Lim ω
6 5 limenpsi ω FinIV ω ω
7 6 ensymd ω FinIV ω ω
8 fin4i ω ω ω ω ¬ ω FinIV
9 4 7 8 sylancr ω FinIV ¬ ω FinIV
10 1 9 pm2.65i ¬ ω FinIV