Step |
Hyp |
Ref |
Expression |
1 |
|
omlfh1.b |
|
2 |
|
omlfh1.j |
|
3 |
|
omlfh1.m |
|
4 |
|
omlfh1.c |
|
5 |
|
eqid |
|
6 |
1 5 4
|
cmt4N |
|
7 |
6
|
3adant3r3 |
|
8 |
1 5 4
|
cmt4N |
|
9 |
8
|
3adant3r2 |
|
10 |
7 9
|
anbi12d |
|
11 |
|
simpl |
|
12 |
|
omlop |
|
13 |
12
|
adantr |
|
14 |
|
simpr1 |
|
15 |
1 5
|
opoccl |
|
16 |
13 14 15
|
syl2anc |
|
17 |
|
simpr2 |
|
18 |
1 5
|
opoccl |
|
19 |
13 17 18
|
syl2anc |
|
20 |
|
simpr3 |
|
21 |
1 5
|
opoccl |
|
22 |
13 20 21
|
syl2anc |
|
23 |
16 19 22
|
3jca |
|
24 |
1 2 3 4
|
omlfh1N |
|
25 |
24
|
fveq2d |
|
26 |
25
|
3exp |
|
27 |
11 23 26
|
sylc |
|
28 |
10 27
|
sylbid |
|
29 |
28
|
3impia |
|
30 |
|
omlol |
|
31 |
30
|
adantr |
|
32 |
|
omllat |
|
33 |
32
|
adantr |
|
34 |
1 2
|
latjcl |
|
35 |
33 19 22 34
|
syl3anc |
|
36 |
1 2 3 5
|
oldmm2 |
|
37 |
31 14 35 36
|
syl3anc |
|
38 |
1 2 3 5
|
oldmj4 |
|
39 |
31 17 20 38
|
syl3anc |
|
40 |
39
|
oveq2d |
|
41 |
37 40
|
eqtr2d |
|
42 |
41
|
3adant3 |
|
43 |
1 3
|
latmcl |
|
44 |
33 16 19 43
|
syl3anc |
|
45 |
1 3
|
latmcl |
|
46 |
33 16 22 45
|
syl3anc |
|
47 |
1 2 3 5
|
oldmj1 |
|
48 |
31 44 46 47
|
syl3anc |
|
49 |
1 2 3 5
|
oldmm4 |
|
50 |
31 14 17 49
|
syl3anc |
|
51 |
1 2 3 5
|
oldmm4 |
|
52 |
31 14 20 51
|
syl3anc |
|
53 |
50 52
|
oveq12d |
|
54 |
48 53
|
eqtr2d |
|
55 |
54
|
3adant3 |
|
56 |
29 42 55
|
3eqtr4d |
|