Metamath Proof Explorer


Theorem omlim

Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of TakeutiZaring p. 62. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion omlim A On B C Lim B A 𝑜 B = x B A 𝑜 x

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 simpr B C Lim B Lim B
3 1 2 jca B C Lim B B On Lim B
4 rdglim2a B On Lim B rec y V y + 𝑜 A B = x B rec y V y + 𝑜 A x
5 4 adantl A On B On Lim B rec y V y + 𝑜 A B = x B rec y V y + 𝑜 A x
6 omv A On B On A 𝑜 B = rec y V y + 𝑜 A B
7 onelon B On x B x On
8 omv A On x On A 𝑜 x = rec y V y + 𝑜 A x
9 7 8 sylan2 A On B On x B A 𝑜 x = rec y V y + 𝑜 A x
10 9 anassrs A On B On x B A 𝑜 x = rec y V y + 𝑜 A x
11 10 iuneq2dv A On B On x B A 𝑜 x = x B rec y V y + 𝑜 A x
12 6 11 eqeq12d A On B On A 𝑜 B = x B A 𝑜 x rec y V y + 𝑜 A B = x B rec y V y + 𝑜 A x
13 12 adantrr A On B On Lim B A 𝑜 B = x B A 𝑜 x rec y V y + 𝑜 A B = x B rec y V y + 𝑜 A x
14 5 13 mpbird A On B On Lim B A 𝑜 B = x B A 𝑜 x
15 3 14 sylan2 A On B C Lim B A 𝑜 B = x B A 𝑜 x