Metamath Proof Explorer


Theorem omlimcl

Description: The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)

Ref Expression
Assertion omlimcl A On B C Lim B A Lim A 𝑜 B

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 omcl A On B On A 𝑜 B On
3 eloni A 𝑜 B On Ord A 𝑜 B
4 2 3 syl A On B On Ord A 𝑜 B
5 1 4 sylan2 A On B C Lim B Ord A 𝑜 B
6 5 adantr A On B C Lim B A Ord A 𝑜 B
7 0ellim Lim B B
8 n0i B ¬ B =
9 7 8 syl Lim B ¬ B =
10 n0i A ¬ A =
11 9 10 anim12ci Lim B A ¬ A = ¬ B =
12 11 adantll B C Lim B A ¬ A = ¬ B =
13 12 adantll A On B C Lim B A ¬ A = ¬ B =
14 om00 A On B On A 𝑜 B = A = B =
15 14 notbid A On B On ¬ A 𝑜 B = ¬ A = B =
16 ioran ¬ A = B = ¬ A = ¬ B =
17 15 16 bitrdi A On B On ¬ A 𝑜 B = ¬ A = ¬ B =
18 1 17 sylan2 A On B C Lim B ¬ A 𝑜 B = ¬ A = ¬ B =
19 18 adantr A On B C Lim B A ¬ A 𝑜 B = ¬ A = ¬ B =
20 13 19 mpbird A On B C Lim B A ¬ A 𝑜 B =
21 vex y V
22 21 sucid y suc y
23 omlim A On B C Lim B A 𝑜 B = x B A 𝑜 x
24 eqeq1 A 𝑜 B = suc y A 𝑜 B = x B A 𝑜 x suc y = x B A 𝑜 x
25 24 biimpac A 𝑜 B = x B A 𝑜 x A 𝑜 B = suc y suc y = x B A 𝑜 x
26 23 25 sylan A On B C Lim B A 𝑜 B = suc y suc y = x B A 𝑜 x
27 22 26 eleqtrid A On B C Lim B A 𝑜 B = suc y y x B A 𝑜 x
28 eliun y x B A 𝑜 x x B y A 𝑜 x
29 27 28 sylib A On B C Lim B A 𝑜 B = suc y x B y A 𝑜 x
30 29 adantlr A On B C Lim B A A 𝑜 B = suc y x B y A 𝑜 x
31 onelon B On x B x On
32 1 31 sylan B C Lim B x B x On
33 onnbtwn x On ¬ x B B suc x
34 imnan x B ¬ B suc x ¬ x B B suc x
35 33 34 sylibr x On x B ¬ B suc x
36 35 com12 x B x On ¬ B suc x
37 36 adantl B C Lim B x B x On ¬ B suc x
38 32 37 mpd B C Lim B x B ¬ B suc x
39 38 ad5ant24 A On B C Lim B A x B y A 𝑜 x ¬ B suc x
40 simpl B On x B B On
41 40 31 jca B On x B B On x On
42 1 41 sylan B C Lim B x B B On x On
43 42 anim2i A On B C Lim B x B A On B On x On
44 43 anassrs A On B C Lim B x B A On B On x On
45 omcl A On x On A 𝑜 x On
46 eloni A 𝑜 x On Ord A 𝑜 x
47 ordsucelsuc Ord A 𝑜 x y A 𝑜 x suc y suc A 𝑜 x
48 46 47 syl A 𝑜 x On y A 𝑜 x suc y suc A 𝑜 x
49 oa1suc A 𝑜 x On A 𝑜 x + 𝑜 1 𝑜 = suc A 𝑜 x
50 49 eleq2d A 𝑜 x On suc y A 𝑜 x + 𝑜 1 𝑜 suc y suc A 𝑜 x
51 48 50 bitr4d A 𝑜 x On y A 𝑜 x suc y A 𝑜 x + 𝑜 1 𝑜
52 45 51 syl A On x On y A 𝑜 x suc y A 𝑜 x + 𝑜 1 𝑜
53 52 adantr A On x On A y A 𝑜 x suc y A 𝑜 x + 𝑜 1 𝑜
54 eloni A On Ord A
55 ordgt0ge1 Ord A A 1 𝑜 A
56 54 55 syl A On A 1 𝑜 A
57 56 adantr A On x On A 1 𝑜 A
58 1on 1 𝑜 On
59 oaword 1 𝑜 On A On A 𝑜 x On 1 𝑜 A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 x + 𝑜 A
60 58 59 mp3an1 A On A 𝑜 x On 1 𝑜 A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 x + 𝑜 A
61 45 60 syldan A On x On 1 𝑜 A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 x + 𝑜 A
62 57 61 bitrd A On x On A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 x + 𝑜 A
63 62 biimpa A On x On A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 x + 𝑜 A
64 omsuc A On x On A 𝑜 suc x = A 𝑜 x + 𝑜 A
65 64 adantr A On x On A A 𝑜 suc x = A 𝑜 x + 𝑜 A
66 63 65 sseqtrrd A On x On A A 𝑜 x + 𝑜 1 𝑜 A 𝑜 suc x
67 66 sseld A On x On A suc y A 𝑜 x + 𝑜 1 𝑜 suc y A 𝑜 suc x
68 53 67 sylbid A On x On A y A 𝑜 x suc y A 𝑜 suc x
69 eleq1 A 𝑜 B = suc y A 𝑜 B A 𝑜 suc x suc y A 𝑜 suc x
70 69 biimprd A 𝑜 B = suc y suc y A 𝑜 suc x A 𝑜 B A 𝑜 suc x
71 68 70 syl9 A On x On A A 𝑜 B = suc y y A 𝑜 x A 𝑜 B A 𝑜 suc x
72 71 com23 A On x On A y A 𝑜 x A 𝑜 B = suc y A 𝑜 B A 𝑜 suc x
73 72 adantlrl A On B On x On A y A 𝑜 x A 𝑜 B = suc y A 𝑜 B A 𝑜 suc x
74 sucelon x On suc x On
75 omord B On suc x On A On B suc x A A 𝑜 B A 𝑜 suc x
76 simpl B suc x A B suc x
77 75 76 syl6bir B On suc x On A On A 𝑜 B A 𝑜 suc x B suc x
78 74 77 syl3an2b B On x On A On A 𝑜 B A 𝑜 suc x B suc x
79 78 3comr A On B On x On A 𝑜 B A 𝑜 suc x B suc x
80 79 3expb A On B On x On A 𝑜 B A 𝑜 suc x B suc x
81 80 adantr A On B On x On A A 𝑜 B A 𝑜 suc x B suc x
82 73 81 syl6d A On B On x On A y A 𝑜 x A 𝑜 B = suc y B suc x
83 44 82 sylan A On B C Lim B x B A y A 𝑜 x A 𝑜 B = suc y B suc x
84 83 an32s A On B C Lim B A x B y A 𝑜 x A 𝑜 B = suc y B suc x
85 84 imp A On B C Lim B A x B y A 𝑜 x A 𝑜 B = suc y B suc x
86 39 85 mtod A On B C Lim B A x B y A 𝑜 x ¬ A 𝑜 B = suc y
87 86 rexlimdva2 A On B C Lim B A x B y A 𝑜 x ¬ A 𝑜 B = suc y
88 87 adantr A On B C Lim B A A 𝑜 B = suc y x B y A 𝑜 x ¬ A 𝑜 B = suc y
89 30 88 mpd A On B C Lim B A A 𝑜 B = suc y ¬ A 𝑜 B = suc y
90 89 pm2.01da A On B C Lim B A ¬ A 𝑜 B = suc y
91 90 adantr A On B C Lim B A y On ¬ A 𝑜 B = suc y
92 91 nrexdv A On B C Lim B A ¬ y On A 𝑜 B = suc y
93 ioran ¬ A 𝑜 B = y On A 𝑜 B = suc y ¬ A 𝑜 B = ¬ y On A 𝑜 B = suc y
94 20 92 93 sylanbrc A On B C Lim B A ¬ A 𝑜 B = y On A 𝑜 B = suc y
95 dflim3 Lim A 𝑜 B Ord A 𝑜 B ¬ A 𝑜 B = y On A 𝑜 B = suc y
96 6 94 95 sylanbrc A On B C Lim B A Lim A 𝑜 B