Step |
Hyp |
Ref |
Expression |
1 |
|
limelon |
|
2 |
|
omcl |
|
3 |
|
eloni |
|
4 |
2 3
|
syl |
|
5 |
1 4
|
sylan2 |
|
6 |
5
|
adantr |
|
7 |
|
0ellim |
|
8 |
|
n0i |
|
9 |
7 8
|
syl |
|
10 |
|
n0i |
|
11 |
9 10
|
anim12ci |
|
12 |
11
|
adantll |
|
13 |
12
|
adantll |
|
14 |
|
om00 |
|
15 |
14
|
notbid |
|
16 |
|
ioran |
|
17 |
15 16
|
bitrdi |
|
18 |
1 17
|
sylan2 |
|
19 |
18
|
adantr |
|
20 |
13 19
|
mpbird |
|
21 |
|
vex |
|
22 |
21
|
sucid |
|
23 |
|
omlim |
|
24 |
|
eqeq1 |
|
25 |
24
|
biimpac |
|
26 |
23 25
|
sylan |
|
27 |
22 26
|
eleqtrid |
|
28 |
|
eliun |
|
29 |
27 28
|
sylib |
|
30 |
29
|
adantlr |
|
31 |
|
onelon |
|
32 |
1 31
|
sylan |
|
33 |
|
onnbtwn |
|
34 |
|
imnan |
|
35 |
33 34
|
sylibr |
|
36 |
35
|
com12 |
|
37 |
36
|
adantl |
|
38 |
32 37
|
mpd |
|
39 |
38
|
ad5ant24 |
|
40 |
|
simpl |
|
41 |
40 31
|
jca |
|
42 |
1 41
|
sylan |
|
43 |
42
|
anim2i |
|
44 |
43
|
anassrs |
|
45 |
|
omcl |
|
46 |
|
eloni |
|
47 |
|
ordsucelsuc |
|
48 |
46 47
|
syl |
|
49 |
|
oa1suc |
|
50 |
49
|
eleq2d |
|
51 |
48 50
|
bitr4d |
|
52 |
45 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
|
eloni |
|
55 |
|
ordgt0ge1 |
|
56 |
54 55
|
syl |
|
57 |
56
|
adantr |
|
58 |
|
1on |
|
59 |
|
oaword |
|
60 |
58 59
|
mp3an1 |
|
61 |
45 60
|
syldan |
|
62 |
57 61
|
bitrd |
|
63 |
62
|
biimpa |
|
64 |
|
omsuc |
|
65 |
64
|
adantr |
|
66 |
63 65
|
sseqtrrd |
|
67 |
66
|
sseld |
|
68 |
53 67
|
sylbid |
|
69 |
|
eleq1 |
|
70 |
69
|
biimprd |
|
71 |
68 70
|
syl9 |
|
72 |
71
|
com23 |
|
73 |
72
|
adantlrl |
|
74 |
|
sucelon |
|
75 |
|
omord |
|
76 |
|
simpl |
|
77 |
75 76
|
syl6bir |
|
78 |
74 77
|
syl3an2b |
|
79 |
78
|
3comr |
|
80 |
79
|
3expb |
|
81 |
80
|
adantr |
|
82 |
73 81
|
syl6d |
|
83 |
44 82
|
sylan |
|
84 |
83
|
an32s |
|
85 |
84
|
imp |
|
86 |
39 85
|
mtod |
|
87 |
86
|
rexlimdva2 |
|
88 |
87
|
adantr |
|
89 |
30 88
|
mpd |
|
90 |
89
|
pm2.01da |
|
91 |
90
|
adantr |
|
92 |
91
|
nrexdv |
|
93 |
|
ioran |
|
94 |
20 92 93
|
sylanbrc |
|
95 |
|
dflim3 |
|
96 |
6 94 95
|
sylanbrc |
|