Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
omllat
Next ⟩
omllaw
Metamath Proof Explorer
Ascii
Unicode
Theorem
omllat
Description:
An orthomodular lattice is a lattice.
(Contributed by
NM
, 6-Nov-2011)
Ref
Expression
Assertion
omllat
⊢
K
∈
OML
→
K
∈
Lat
Proof
Step
Hyp
Ref
Expression
1
omlol
⊢
K
∈
OML
→
K
∈
OL
2
ollat
⊢
K
∈
OL
→
K
∈
Lat
3
1
2
syl
⊢
K
∈
OML
→
K
∈
Lat