Step |
Hyp |
Ref |
Expression |
1 |
|
omllaw4.b |
|
2 |
|
omllaw4.l |
|
3 |
|
omllaw4.m |
|
4 |
|
omllaw4.o |
|
5 |
|
simp1 |
|
6 |
|
omlop |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
simp3 |
|
9 |
1 4
|
opoccl |
|
10 |
7 8 9
|
syl2anc |
|
11 |
|
simp2 |
|
12 |
1 4
|
opoccl |
|
13 |
7 11 12
|
syl2anc |
|
14 |
|
eqid |
|
15 |
1 2 14 3 4
|
omllaw |
|
16 |
5 10 13 15
|
syl3anc |
|
17 |
1 2 4
|
oplecon3b |
|
18 |
6 17
|
syl3an1 |
|
19 |
|
omllat |
|
20 |
19
|
3ad2ant1 |
|
21 |
1 3
|
latmcl |
|
22 |
20 13 8 21
|
syl3anc |
|
23 |
1 4
|
opoccl |
|
24 |
7 22 23
|
syl2anc |
|
25 |
1 3
|
latmcl |
|
26 |
20 24 8 25
|
syl3anc |
|
27 |
1 4
|
opcon3b |
|
28 |
7 26 11 27
|
syl3anc |
|
29 |
1 14
|
latjcom |
|
30 |
20 22 10 29
|
syl3anc |
|
31 |
|
omlol |
|
32 |
31
|
3ad2ant1 |
|
33 |
1 14 3 4
|
oldmm2 |
|
34 |
32 22 8 33
|
syl3anc |
|
35 |
1 4
|
opococ |
|
36 |
7 8 35
|
syl2anc |
|
37 |
36
|
oveq2d |
|
38 |
37
|
oveq2d |
|
39 |
30 34 38
|
3eqtr4d |
|
40 |
39
|
eqeq2d |
|
41 |
28 40
|
bitrd |
|
42 |
16 18 41
|
3imtr4d |
|