Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
omlol
Next ⟩
omlop
Metamath Proof Explorer
Ascii
Unicode
Theorem
omlol
Description:
An orthomodular lattice is an ortholattice.
(Contributed by
NM
, 18-Sep-2011)
Ref
Expression
Assertion
omlol
⊢
K
∈
OML
→
K
∈
OL
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
K
=
Base
K
2
eqid
⊢
≤
K
=
≤
K
3
eqid
⊢
join
⁡
K
=
join
⁡
K
4
eqid
⊢
meet
⁡
K
=
meet
⁡
K
5
eqid
⊢
oc
⁡
K
=
oc
⁡
K
6
1
2
3
4
5
isoml
⊢
K
∈
OML
↔
K
∈
OL
∧
∀
x
∈
Base
K
∀
y
∈
Base
K
x
≤
K
y
→
y
=
x
join
⁡
K
y
meet
⁡
K
oc
⁡
K
⁡
x
7
6
simplbi
⊢
K
∈
OML
→
K
∈
OL