Metamath Proof Explorer


Theorem omlol

Description: An orthomodular lattice is an ortholattice. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion omlol K OML K OL

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid K = K
3 eqid join K = join K
4 eqid meet K = meet K
5 eqid oc K = oc K
6 1 2 3 4 5 isoml K OML K OL x Base K y Base K x K y y = x join K y meet K oc K x
7 6 simplbi K OML K OL