Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
omlop
Next ⟩
omllat
Metamath Proof Explorer
Ascii
Unicode
Theorem
omlop
Description:
An orthomodular lattice is an orthoposet.
(Contributed by
NM
, 6-Nov-2011)
Ref
Expression
Assertion
omlop
⊢
K
∈
OML
→
K
∈
OP
Proof
Step
Hyp
Ref
Expression
1
omlol
⊢
K
∈
OML
→
K
∈
OL
2
olop
⊢
K
∈
OL
→
K
∈
OP
3
1
2
syl
⊢
K
∈
OML
→
K
∈
OP