Metamath Proof Explorer


Theorem omlsi

Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omls.1 A C
omls.2 B S
Assertion omlsi A B B A = 0 A = B

Proof

Step Hyp Ref Expression
1 omls.1 A C
2 omls.2 B S
3 eqeq1 A = if A B B A = 0 A 0 A = B if A B B A = 0 A 0 = B
4 eqeq2 B = if A B B A = 0 B 0 if A B B A = 0 A 0 = B if A B B A = 0 A 0 = if A B B A = 0 B 0
5 h0elch 0 C
6 1 5 ifcli if A B B A = 0 A 0 C
7 h0elsh 0 S
8 2 7 ifcli if A B B A = 0 B 0 S
9 sseq1 A = if A B B A = 0 A 0 A B if A B B A = 0 A 0 B
10 fveq2 A = if A B B A = 0 A 0 A = if A B B A = 0 A 0
11 10 ineq2d A = if A B B A = 0 A 0 B A = B if A B B A = 0 A 0
12 11 eqeq1d A = if A B B A = 0 A 0 B A = 0 B if A B B A = 0 A 0 = 0
13 9 12 anbi12d A = if A B B A = 0 A 0 A B B A = 0 if A B B A = 0 A 0 B B if A B B A = 0 A 0 = 0
14 sseq2 B = if A B B A = 0 B 0 if A B B A = 0 A 0 B if A B B A = 0 A 0 if A B B A = 0 B 0
15 ineq1 B = if A B B A = 0 B 0 B if A B B A = 0 A 0 = if A B B A = 0 B 0 if A B B A = 0 A 0
16 15 eqeq1d B = if A B B A = 0 B 0 B if A B B A = 0 A 0 = 0 if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
17 14 16 anbi12d B = if A B B A = 0 B 0 if A B B A = 0 A 0 B B if A B B A = 0 A 0 = 0 if A B B A = 0 A 0 if A B B A = 0 B 0 if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
18 sseq1 0 = if A B B A = 0 A 0 0 0 if A B B A = 0 A 0 0
19 fveq2 0 = if A B B A = 0 A 0 0 = if A B B A = 0 A 0
20 19 ineq2d 0 = if A B B A = 0 A 0 0 0 = 0 if A B B A = 0 A 0
21 20 eqeq1d 0 = if A B B A = 0 A 0 0 0 = 0 0 if A B B A = 0 A 0 = 0
22 18 21 anbi12d 0 = if A B B A = 0 A 0 0 0 0 0 = 0 if A B B A = 0 A 0 0 0 if A B B A = 0 A 0 = 0
23 sseq2 0 = if A B B A = 0 B 0 if A B B A = 0 A 0 0 if A B B A = 0 A 0 if A B B A = 0 B 0
24 ineq1 0 = if A B B A = 0 B 0 0 if A B B A = 0 A 0 = if A B B A = 0 B 0 if A B B A = 0 A 0
25 24 eqeq1d 0 = if A B B A = 0 B 0 0 if A B B A = 0 A 0 = 0 if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
26 23 25 anbi12d 0 = if A B B A = 0 B 0 if A B B A = 0 A 0 0 0 if A B B A = 0 A 0 = 0 if A B B A = 0 A 0 if A B B A = 0 B 0 if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
27 ssid 0 0
28 ocin 0 S 0 0 = 0
29 7 28 ax-mp 0 0 = 0
30 27 29 pm3.2i 0 0 0 0 = 0
31 13 17 22 26 30 elimhyp2v if A B B A = 0 A 0 if A B B A = 0 B 0 if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
32 31 simpli if A B B A = 0 A 0 if A B B A = 0 B 0
33 31 simpri if A B B A = 0 B 0 if A B B A = 0 A 0 = 0
34 6 8 32 33 omlsii if A B B A = 0 A 0 = if A B B A = 0 B 0
35 3 4 34 dedth2v A B B A = 0 A = B