Metamath Proof Explorer


Theorem omoe

Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion omoe A ¬ 2 A B ¬ 2 B 2 A B

Proof

Step Hyp Ref Expression
1 odd2np1 A ¬ 2 A a 2 a + 1 = A
2 odd2np1 B ¬ 2 B b 2 b + 1 = B
3 1 2 bi2anan9 A B ¬ 2 A ¬ 2 B a 2 a + 1 = A b 2 b + 1 = B
4 reeanv a b 2 a + 1 = A 2 b + 1 = B a 2 a + 1 = A b 2 b + 1 = B
5 2z 2
6 zsubcl a b a b
7 dvdsmul1 2 a b 2 2 a b
8 5 6 7 sylancr a b 2 2 a b
9 zcn a a
10 zcn b b
11 2cn 2
12 mulcl 2 a 2 a
13 11 12 mpan a 2 a
14 mulcl 2 b 2 b
15 11 14 mpan b 2 b
16 ax-1cn 1
17 pnpcan2 2 a 2 b 1 2 a + 1 - 2 b + 1 = 2 a 2 b
18 16 17 mp3an3 2 a 2 b 2 a + 1 - 2 b + 1 = 2 a 2 b
19 13 15 18 syl2an a b 2 a + 1 - 2 b + 1 = 2 a 2 b
20 subdi 2 a b 2 a b = 2 a 2 b
21 11 20 mp3an1 a b 2 a b = 2 a 2 b
22 19 21 eqtr4d a b 2 a + 1 - 2 b + 1 = 2 a b
23 9 10 22 syl2an a b 2 a + 1 - 2 b + 1 = 2 a b
24 8 23 breqtrrd a b 2 2 a + 1 - 2 b + 1
25 oveq12 2 a + 1 = A 2 b + 1 = B 2 a + 1 - 2 b + 1 = A B
26 25 breq2d 2 a + 1 = A 2 b + 1 = B 2 2 a + 1 - 2 b + 1 2 A B
27 24 26 syl5ibcom a b 2 a + 1 = A 2 b + 1 = B 2 A B
28 27 rexlimivv a b 2 a + 1 = A 2 b + 1 = B 2 A B
29 4 28 sylbir a 2 a + 1 = A b 2 b + 1 = B 2 A B
30 3 29 syl6bi A B ¬ 2 A ¬ 2 B 2 A B
31 30 imp A B ¬ 2 A ¬ 2 B 2 A B
32 31 an4s A ¬ 2 A B ¬ 2 B 2 A B