Metamath Proof Explorer


Theorem omoeALTV

Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omoeALTV A Odd B Odd A B Even

Proof

Step Hyp Ref Expression
1 oddz A Odd A
2 1 zcnd A Odd A
3 oddz B Odd B
4 3 zcnd B Odd B
5 negsub A B A + B = A B
6 2 4 5 syl2an A Odd B Odd A + B = A B
7 onego B Odd B Odd
8 opoeALTV A Odd B Odd A + B Even
9 7 8 sylan2 A Odd B Odd A + B Even
10 6 9 eqeltrrd A Odd B Odd A B Even