Metamath Proof Explorer


Theorem omopthlem1

Description: Lemma for omopthi . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses omopthlem1.1 A ω
omopthlem1.2 C ω
Assertion omopthlem1 A C A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C

Proof

Step Hyp Ref Expression
1 omopthlem1.1 A ω
2 omopthlem1.2 C ω
3 peano2 A ω suc A ω
4 1 3 ax-mp suc A ω
5 nnmwordi suc A ω C ω suc A ω suc A C suc A 𝑜 suc A suc A 𝑜 C
6 4 2 4 5 mp3an suc A C suc A 𝑜 suc A suc A 𝑜 C
7 nnmwordri suc A ω C ω C ω suc A C suc A 𝑜 C C 𝑜 C
8 4 2 2 7 mp3an suc A C suc A 𝑜 C C 𝑜 C
9 6 8 sstrd suc A C suc A 𝑜 suc A C 𝑜 C
10 1 nnoni A On
11 2 nnoni C On
12 10 11 onsucssi A C suc A C
13 1 1 nnmcli A 𝑜 A ω
14 2onn 2 𝑜 ω
15 1 14 nnmcli A 𝑜 2 𝑜 ω
16 13 15 nnacli A 𝑜 A + 𝑜 A 𝑜 2 𝑜 ω
17 16 nnoni A 𝑜 A + 𝑜 A 𝑜 2 𝑜 On
18 2 2 nnmcli C 𝑜 C ω
19 18 nnoni C 𝑜 C On
20 17 19 onsucssi A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C suc A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C
21 4 1 nnmcli suc A 𝑜 A ω
22 nnasuc suc A 𝑜 A ω A ω suc A 𝑜 A + 𝑜 suc A = suc suc A 𝑜 A + 𝑜 A
23 21 1 22 mp2an suc A 𝑜 A + 𝑜 suc A = suc suc A 𝑜 A + 𝑜 A
24 nnmsuc suc A ω A ω suc A 𝑜 suc A = suc A 𝑜 A + 𝑜 suc A
25 4 1 24 mp2an suc A 𝑜 suc A = suc A 𝑜 A + 𝑜 suc A
26 nnaass A 𝑜 A ω A ω A ω A 𝑜 A + 𝑜 A + 𝑜 A = A 𝑜 A + 𝑜 A + 𝑜 A
27 13 1 1 26 mp3an A 𝑜 A + 𝑜 A + 𝑜 A = A 𝑜 A + 𝑜 A + 𝑜 A
28 nnmcom suc A ω A ω suc A 𝑜 A = A 𝑜 suc A
29 4 1 28 mp2an suc A 𝑜 A = A 𝑜 suc A
30 nnmsuc A ω A ω A 𝑜 suc A = A 𝑜 A + 𝑜 A
31 1 1 30 mp2an A 𝑜 suc A = A 𝑜 A + 𝑜 A
32 29 31 eqtri suc A 𝑜 A = A 𝑜 A + 𝑜 A
33 32 oveq1i suc A 𝑜 A + 𝑜 A = A 𝑜 A + 𝑜 A + 𝑜 A
34 nnm2 A ω A 𝑜 2 𝑜 = A + 𝑜 A
35 1 34 ax-mp A 𝑜 2 𝑜 = A + 𝑜 A
36 35 oveq2i A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = A 𝑜 A + 𝑜 A + 𝑜 A
37 27 33 36 3eqtr4ri A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = suc A 𝑜 A + 𝑜 A
38 suceq A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = suc A 𝑜 A + 𝑜 A suc A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = suc suc A 𝑜 A + 𝑜 A
39 37 38 ax-mp suc A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = suc suc A 𝑜 A + 𝑜 A
40 23 25 39 3eqtr4ri suc A 𝑜 A + 𝑜 A 𝑜 2 𝑜 = suc A 𝑜 suc A
41 40 sseq1i suc A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C suc A 𝑜 suc A C 𝑜 C
42 20 41 bitri A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C suc A 𝑜 suc A C 𝑜 C
43 9 12 42 3imtr4i A C A 𝑜 A + 𝑜 A 𝑜 2 𝑜 C 𝑜 C