| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onelon |
|
| 2 |
1
|
ex |
|
| 3 |
|
eleq2 |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eleq2d |
|
| 6 |
3 5
|
imbi12d |
|
| 7 |
|
eleq2 |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
eleq2d |
|
| 10 |
7 9
|
imbi12d |
|
| 11 |
|
eleq2 |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
eleq2d |
|
| 14 |
11 13
|
imbi12d |
|
| 15 |
|
eleq2 |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
eleq2d |
|
| 18 |
15 17
|
imbi12d |
|
| 19 |
|
noel |
|
| 20 |
19
|
pm2.21i |
|
| 21 |
20
|
a1i |
|
| 22 |
|
elsuci |
|
| 23 |
|
omcl |
|
| 24 |
|
simpl |
|
| 25 |
23 24
|
jca |
|
| 26 |
|
oaword1 |
|
| 27 |
26
|
sseld |
|
| 28 |
27
|
imim2d |
|
| 29 |
28
|
imp |
|
| 30 |
29
|
adantrl |
|
| 31 |
|
oaord1 |
|
| 32 |
31
|
biimpa |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
32 34
|
syl5ibrcom |
|
| 36 |
35
|
adantrr |
|
| 37 |
30 36
|
jaod |
|
| 38 |
25 37
|
sylan |
|
| 39 |
22 38
|
syl5 |
|
| 40 |
|
omsuc |
|
| 41 |
40
|
eleq2d |
|
| 42 |
41
|
adantr |
|
| 43 |
39 42
|
sylibrd |
|
| 44 |
43
|
exp43 |
|
| 45 |
44
|
com12 |
|
| 46 |
45
|
adantld |
|
| 47 |
46
|
impd |
|
| 48 |
|
id |
|
| 49 |
48
|
ad2ant2r |
|
| 50 |
|
limsuc |
|
| 51 |
50
|
biimpa |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
ssiun2s |
|
| 54 |
51 53
|
syl |
|
| 55 |
54
|
adantll |
|
| 56 |
|
vex |
|
| 57 |
|
omlim |
|
| 58 |
56 57
|
mpanr1 |
|
| 59 |
58
|
adantr |
|
| 60 |
55 59
|
sseqtrrd |
|
| 61 |
49 60
|
sylan |
|
| 62 |
|
omcl |
|
| 63 |
|
oaord1 |
|
| 64 |
62 63
|
sylan |
|
| 65 |
64
|
anabss1 |
|
| 66 |
65
|
biimpa |
|
| 67 |
|
omsuc |
|
| 68 |
67
|
adantr |
|
| 69 |
66 68
|
eleqtrrd |
|
| 70 |
69
|
adantrl |
|
| 71 |
70
|
adantr |
|
| 72 |
61 71
|
sseldd |
|
| 73 |
72
|
exp53 |
|
| 74 |
73
|
com13 |
|
| 75 |
74
|
imp4c |
|
| 76 |
75
|
a1dd |
|
| 77 |
6 10 14 18 21 47 76
|
tfinds3 |
|
| 78 |
77
|
com23 |
|
| 79 |
78
|
exp4a |
|
| 80 |
79
|
exp4a |
|
| 81 |
2 80
|
mpdd |
|
| 82 |
81
|
com34 |
|
| 83 |
82
|
com24 |
|
| 84 |
83
|
imp31 |
|