Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
|
2 |
1
|
ex |
|
3 |
|
eleq2 |
|
4 |
|
oveq2 |
|
5 |
4
|
eleq2d |
|
6 |
3 5
|
imbi12d |
|
7 |
|
eleq2 |
|
8 |
|
oveq2 |
|
9 |
8
|
eleq2d |
|
10 |
7 9
|
imbi12d |
|
11 |
|
eleq2 |
|
12 |
|
oveq2 |
|
13 |
12
|
eleq2d |
|
14 |
11 13
|
imbi12d |
|
15 |
|
eleq2 |
|
16 |
|
oveq2 |
|
17 |
16
|
eleq2d |
|
18 |
15 17
|
imbi12d |
|
19 |
|
noel |
|
20 |
19
|
pm2.21i |
|
21 |
20
|
a1i |
|
22 |
|
elsuci |
|
23 |
|
omcl |
|
24 |
|
simpl |
|
25 |
23 24
|
jca |
|
26 |
|
oaword1 |
|
27 |
26
|
sseld |
|
28 |
27
|
imim2d |
|
29 |
28
|
imp |
|
30 |
29
|
adantrl |
|
31 |
|
oaord1 |
|
32 |
31
|
biimpa |
|
33 |
|
oveq2 |
|
34 |
33
|
eleq1d |
|
35 |
32 34
|
syl5ibrcom |
|
36 |
35
|
adantrr |
|
37 |
30 36
|
jaod |
|
38 |
25 37
|
sylan |
|
39 |
22 38
|
syl5 |
|
40 |
|
omsuc |
|
41 |
40
|
eleq2d |
|
42 |
41
|
adantr |
|
43 |
39 42
|
sylibrd |
|
44 |
43
|
exp43 |
|
45 |
44
|
com12 |
|
46 |
45
|
adantld |
|
47 |
46
|
impd |
|
48 |
|
id |
|
49 |
48
|
ad2ant2r |
|
50 |
|
limsuc |
|
51 |
50
|
biimpa |
|
52 |
|
oveq2 |
|
53 |
52
|
ssiun2s |
|
54 |
51 53
|
syl |
|
55 |
54
|
adantll |
|
56 |
|
vex |
|
57 |
|
omlim |
|
58 |
56 57
|
mpanr1 |
|
59 |
58
|
adantr |
|
60 |
55 59
|
sseqtrrd |
|
61 |
49 60
|
sylan |
|
62 |
|
omcl |
|
63 |
|
oaord1 |
|
64 |
62 63
|
sylan |
|
65 |
64
|
anabss1 |
|
66 |
65
|
biimpa |
|
67 |
|
omsuc |
|
68 |
67
|
adantr |
|
69 |
66 68
|
eleqtrrd |
|
70 |
69
|
adantrl |
|
71 |
70
|
adantr |
|
72 |
61 71
|
sseldd |
|
73 |
72
|
exp53 |
|
74 |
73
|
com13 |
|
75 |
74
|
imp4c |
|
76 |
75
|
a1dd |
|
77 |
6 10 14 18 21 47 76
|
tfinds3 |
|
78 |
77
|
com23 |
|
79 |
78
|
exp4a |
|
80 |
79
|
exp4a |
|
81 |
2 80
|
mpdd |
|
82 |
81
|
com34 |
|
83 |
82
|
com24 |
|
84 |
83
|
imp31 |
|