Metamath Proof Explorer


Theorem omordi

Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omordi B On C On C A B C 𝑜 A C 𝑜 B

Proof

Step Hyp Ref Expression
1 onelon B On A B A On
2 1 ex B On A B A On
3 eleq2 x = A x A
4 oveq2 x = C 𝑜 x = C 𝑜
5 4 eleq2d x = C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜
6 3 5 imbi12d x = A x C 𝑜 A C 𝑜 x A C 𝑜 A C 𝑜
7 eleq2 x = y A x A y
8 oveq2 x = y C 𝑜 x = C 𝑜 y
9 8 eleq2d x = y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 y
10 7 9 imbi12d x = y A x C 𝑜 A C 𝑜 x A y C 𝑜 A C 𝑜 y
11 eleq2 x = suc y A x A suc y
12 oveq2 x = suc y C 𝑜 x = C 𝑜 suc y
13 12 eleq2d x = suc y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 suc y
14 11 13 imbi12d x = suc y A x C 𝑜 A C 𝑜 x A suc y C 𝑜 A C 𝑜 suc y
15 eleq2 x = B A x A B
16 oveq2 x = B C 𝑜 x = C 𝑜 B
17 16 eleq2d x = B C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 B
18 15 17 imbi12d x = B A x C 𝑜 A C 𝑜 x A B C 𝑜 A C 𝑜 B
19 noel ¬ A
20 19 pm2.21i A C 𝑜 A C 𝑜
21 20 a1i A On C On C A C 𝑜 A C 𝑜
22 elsuci A suc y A y A = y
23 omcl C On y On C 𝑜 y On
24 simpl C On y On C On
25 23 24 jca C On y On C 𝑜 y On C On
26 oaword1 C 𝑜 y On C On C 𝑜 y C 𝑜 y + 𝑜 C
27 26 sseld C 𝑜 y On C On C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 y + 𝑜 C
28 27 imim2d C 𝑜 y On C On A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
29 28 imp C 𝑜 y On C On A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
30 29 adantrl C 𝑜 y On C On C A y C 𝑜 A C 𝑜 y A y C 𝑜 A C 𝑜 y + 𝑜 C
31 oaord1 C 𝑜 y On C On C C 𝑜 y C 𝑜 y + 𝑜 C
32 31 biimpa C 𝑜 y On C On C C 𝑜 y C 𝑜 y + 𝑜 C
33 oveq2 A = y C 𝑜 A = C 𝑜 y
34 33 eleq1d A = y C 𝑜 A C 𝑜 y + 𝑜 C C 𝑜 y C 𝑜 y + 𝑜 C
35 32 34 syl5ibrcom C 𝑜 y On C On C A = y C 𝑜 A C 𝑜 y + 𝑜 C
36 35 adantrr C 𝑜 y On C On C A y C 𝑜 A C 𝑜 y A = y C 𝑜 A C 𝑜 y + 𝑜 C
37 30 36 jaod C 𝑜 y On C On C A y C 𝑜 A C 𝑜 y A y A = y C 𝑜 A C 𝑜 y + 𝑜 C
38 25 37 sylan C On y On C A y C 𝑜 A C 𝑜 y A y A = y C 𝑜 A C 𝑜 y + 𝑜 C
39 22 38 syl5 C On y On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 y + 𝑜 C
40 omsuc C On y On C 𝑜 suc y = C 𝑜 y + 𝑜 C
41 40 eleq2d C On y On C 𝑜 A C 𝑜 suc y C 𝑜 A C 𝑜 y + 𝑜 C
42 41 adantr C On y On C A y C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc y C 𝑜 A C 𝑜 y + 𝑜 C
43 39 42 sylibrd C On y On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
44 43 exp43 C On y On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
45 44 com12 y On C On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
46 45 adantld y On A On C On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
47 46 impd y On A On C On C A y C 𝑜 A C 𝑜 y A suc y C 𝑜 A C 𝑜 suc y
48 id C On Lim x C On Lim x
49 48 ad2ant2r C On A On Lim x C C On Lim x
50 limsuc Lim x A x suc A x
51 50 biimpa Lim x A x suc A x
52 oveq2 y = suc A C 𝑜 y = C 𝑜 suc A
53 52 ssiun2s suc A x C 𝑜 suc A y x C 𝑜 y
54 51 53 syl Lim x A x C 𝑜 suc A y x C 𝑜 y
55 54 adantll C On Lim x A x C 𝑜 suc A y x C 𝑜 y
56 vex x V
57 omlim C On x V Lim x C 𝑜 x = y x C 𝑜 y
58 56 57 mpanr1 C On Lim x C 𝑜 x = y x C 𝑜 y
59 58 adantr C On Lim x A x C 𝑜 x = y x C 𝑜 y
60 55 59 sseqtrrd C On Lim x A x C 𝑜 suc A C 𝑜 x
61 49 60 sylan C On A On Lim x C A x C 𝑜 suc A C 𝑜 x
62 omcl C On A On C 𝑜 A On
63 oaord1 C 𝑜 A On C On C C 𝑜 A C 𝑜 A + 𝑜 C
64 62 63 sylan C On A On C On C C 𝑜 A C 𝑜 A + 𝑜 C
65 64 anabss1 C On A On C C 𝑜 A C 𝑜 A + 𝑜 C
66 65 biimpa C On A On C C 𝑜 A C 𝑜 A + 𝑜 C
67 omsuc C On A On C 𝑜 suc A = C 𝑜 A + 𝑜 C
68 67 adantr C On A On C C 𝑜 suc A = C 𝑜 A + 𝑜 C
69 66 68 eleqtrrd C On A On C C 𝑜 A C 𝑜 suc A
70 69 adantrl C On A On Lim x C C 𝑜 A C 𝑜 suc A
71 70 adantr C On A On Lim x C A x C 𝑜 A C 𝑜 suc A
72 61 71 sseldd C On A On Lim x C A x C 𝑜 A C 𝑜 x
73 72 exp53 C On A On Lim x C A x C 𝑜 A C 𝑜 x
74 73 com13 Lim x A On C On C A x C 𝑜 A C 𝑜 x
75 74 imp4c Lim x A On C On C A x C 𝑜 A C 𝑜 x
76 75 a1dd Lim x A On C On C y x A y C 𝑜 A C 𝑜 y A x C 𝑜 A C 𝑜 x
77 6 10 14 18 21 47 76 tfinds3 B On A On C On C A B C 𝑜 A C 𝑜 B
78 77 com23 B On A B A On C On C C 𝑜 A C 𝑜 B
79 78 exp4a B On A B A On C On C C 𝑜 A C 𝑜 B
80 79 exp4a B On A B A On C On C C 𝑜 A C 𝑜 B
81 2 80 mpdd B On A B C On C C 𝑜 A C 𝑜 B
82 81 com34 B On A B C C On C 𝑜 A C 𝑜 B
83 82 com24 B On C On C A B C 𝑜 A C 𝑜 B
84 83 imp31 B On C On C A B C 𝑜 A C 𝑜 B