Metamath Proof Explorer


Theorem omordlim

Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)

Ref Expression
Assertion omordlim AOnBDLimBCA𝑜BxBCA𝑜x

Proof

Step Hyp Ref Expression
1 omlim AOnBDLimBA𝑜B=xBA𝑜x
2 1 eleq2d AOnBDLimBCA𝑜BCxBA𝑜x
3 eliun CxBA𝑜xxBCA𝑜x
4 2 3 bitrdi AOnBDLimBCA𝑜BxBCA𝑜x
5 4 biimpa AOnBDLimBCA𝑜BxBCA𝑜x