Metamath Proof Explorer


Theorem omordlim

Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of TakeutiZaring p. 64. (Contributed by NM, 25-Dec-2004)

Ref Expression
Assertion omordlim A On B D Lim B C A 𝑜 B x B C A 𝑜 x

Proof

Step Hyp Ref Expression
1 omlim A On B D Lim B A 𝑜 B = x B A 𝑜 x
2 1 eleq2d A On B D Lim B C A 𝑜 B C x B A 𝑜 x
3 eliun C x B A 𝑜 x x B C A 𝑜 x
4 2 3 bitrdi A On B D Lim B C A 𝑜 B x B C A 𝑜 x
5 4 biimpa A On B D Lim B C A 𝑜 B x B C A 𝑜 x