Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|
2 |
|
fveq2 |
|
3 |
2
|
eleq2d |
|
4 |
1 3
|
imbi12d |
|
5 |
|
eleq2 |
|
6 |
|
fveq2 |
|
7 |
6
|
eleq2d |
|
8 |
5 7
|
imbi12d |
|
9 |
|
eleq2 |
|
10 |
|
fveq2 |
|
11 |
10
|
eleq2d |
|
12 |
9 11
|
imbi12d |
|
13 |
|
noel |
|
14 |
13
|
pm2.21i |
|
15 |
14
|
a1i |
|
16 |
|
vex |
|
17 |
16
|
elsuc |
|
18 |
|
fveq2 |
|
19 |
|
suceq |
|
20 |
19
|
fveq2d |
|
21 |
18 20
|
eleq12d |
|
22 |
21
|
rspccva |
|
23 |
22
|
adantll |
|
24 |
|
peano2b |
|
25 |
|
ffvelrn |
|
26 |
24 25
|
sylan2b |
|
27 |
|
ssel |
|
28 |
|
ontr1 |
|
29 |
28
|
expcomd |
|
30 |
26 27 29
|
syl56 |
|
31 |
30
|
impl |
|
32 |
31
|
adantlr |
|
33 |
23 32
|
mpd |
|
34 |
33
|
imim2d |
|
35 |
34
|
imp |
|
36 |
|
fveq2 |
|
37 |
36
|
eleq1d |
|
38 |
22 37
|
syl5ibrcom |
|
39 |
38
|
ad4ant23 |
|
40 |
35 39
|
jaod |
|
41 |
17 40
|
syl5bi |
|
42 |
41
|
exp31 |
|
43 |
42
|
com12 |
|
44 |
4 8 12 15 43
|
finds2 |
|