Metamath Proof Explorer


Theorem omv

Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion omv A On B On A 𝑜 B = rec x V x + 𝑜 A B

Proof

Step Hyp Ref Expression
1 oveq2 y = A x + 𝑜 y = x + 𝑜 A
2 1 mpteq2dv y = A x V x + 𝑜 y = x V x + 𝑜 A
3 rdgeq1 x V x + 𝑜 y = x V x + 𝑜 A rec x V x + 𝑜 y = rec x V x + 𝑜 A
4 2 3 syl y = A rec x V x + 𝑜 y = rec x V x + 𝑜 A
5 4 fveq1d y = A rec x V x + 𝑜 y z = rec x V x + 𝑜 A z
6 fveq2 z = B rec x V x + 𝑜 A z = rec x V x + 𝑜 A B
7 df-omul 𝑜 = y On , z On rec x V x + 𝑜 y z
8 fvex rec x V x + 𝑜 A B V
9 5 6 7 8 ovmpo A On B On A 𝑜 B = rec x V x + 𝑜 A B